Metrabase: a cheminformatics and bioinformatics database for small molecule transporter data analysis and (Q)SAR modeling

Both metabolism and transport are key elements defining the bioavailability and biological activity of molecules, i.e. their adverse and therapeutic effects. Structured and high quality experimental data stored in a suitable container, such as a relational database, facilitates easy computational processing and thus allows for high quality information/knowledge to be efficiently inferred by computational analyses. Our aim was to create a freely accessible database that would provide easy access to data describing interactions between proteins involved in transport and xenobiotic metabolism and their small molecule substrates and modulators. We present Metrabase, an integrated cheminformatics and bioinformatics resource containing curated data related to human transport and metabolism of chemical compounds. Its primary content includes over 11,500 interaction records involving nearly 3,500 small molecule substrates and modulators of transport proteins and, currently to a much smaller extent, cytochrome P450 enzymes. Data was manually extracted from the published literature and supplemented with data integrated from other available resources. Metrabase version 1.0 is freely available under a CC BY-SA 4.0 license at http://www-metrabase.ch.cam.ac.uk.Graphical Abstract

[1]  Ortiz de Montellano,et al.  Cytochrome P-450: Structure, Mechanism, and Biochemistry , 1986 .

[2]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[3]  W. Pryor Cytochrome P450: Structure, mechanism, and biochemistry , 1996 .

[4]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[5]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[6]  N. Ozawa,et al.  Transporter Database, TP-Search: A Web-Accessible Comprehensive Database for Research in Pharmacokinetics of Drugs , 2004, Pharmaceutical Research.

[7]  S. White The progress of membrane protein structure determination , 2004, Protein science : a publication of the Protein Society.

[8]  A. Ravna,et al.  Structures and Models of Transporter Proteins , 2004, Journal of Pharmacology and Experimental Therapeutics.

[9]  Erik K. Malm,et al.  A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics* , 2005, Molecular & Cellular Proteomics.

[10]  P. Neuvonen,et al.  Drug interactions with lipid‐lowering drugs: Mechanisms and clinical relevance , 2006, Clinical pharmacology and therapeutics.

[11]  K. Linton,et al.  Structure and function of ABC transporters: the ATP switch provides flexible control , 2007, Pflügers Archiv - European Journal of Physiology.

[12]  Qing Yan,et al.  Human membrane transporter database: A web-accessible relational database for drug transport studies and pharmacogenomics , 2000, AAPS PharmSci.

[13]  D. Young,et al.  Are the Chemical Structures in Your QSAR Correct , 2008 .

[14]  N. Null The IUPAC International Chemical Identifier (InChI) , 2009 .

[15]  D. Rees,et al.  ABC transporters: the power to change , 2009, Nature Reviews Molecular Cell Biology.

[16]  Alexander Tropsha,et al.  Trust, But Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research , 2010, J. Chem. Inf. Model..

[17]  M. Niemi,et al.  Membrane transporters in drug development , 2010, Nature Reviews Drug Discovery.

[18]  Min Zhao,et al.  TSdb: A database of transporter substrates linking metabolic pathways and transporter systems on a genome scale via their shared substrates , 2011, Science China Life Sciences.

[19]  Lu Huang,et al.  Update of TTD: Therapeutic Target Database , 2009, Nucleic Acids Res..

[20]  Shiew-Mei Huang,et al.  Transporter‐Mediated Drug–Drug Interactions , 2011, Clinical pharmacology and therapeutics.

[21]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[22]  F. Müller,et al.  Transporter-mediated drug-drug interactions. , 2011, Pharmacogenomics.

[23]  Peter Murray-Rust,et al.  Chemical Name to Structure: OPSIN, an Open Source Solution , 2011, J. Chem. Inf. Model..

[24]  A. Ravna,et al.  Homology modeling of transporter proteins (carriers and ion channels). , 2012, Methods in molecular biology.

[25]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[26]  R. Altman,et al.  Pharmacogenomics Knowledge for Personalized Medicine , 2012, Clinical pharmacology and therapeutics.

[27]  K. Giacomini,et al.  The UCSF‐FDA TransPortal: A Public Drug Transporter Database , 2012, Clinical pharmacology and therapeutics.

[28]  A. Tropsha,et al.  Human Intestinal Transporter Database: QSAR Modeling and Virtual Profiling of Drug Uptake, Efflux and Interactions , 2013, Pharmaceutical Research.

[29]  Vasanthanathan Poongavanam,et al.  Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors , 2012, Bioorganic & medicinal chemistry.

[30]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2013 , 2012, Nucleic Acids Res..

[31]  Elspeth A. Bruford,et al.  Genenames.org: the HGNC resources in 2013 , 2012, Nucleic Acids Res..

[32]  The UniProt Consortium,et al.  Update on activities at the Universal Protein Resource (UniProt) in 2013 , 2012, Nucleic Acids Res..

[33]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[34]  K. Maeda,et al.  Transporter biology in drug approval: regulatory aspects. , 2013, Molecular aspects of medicine.

[35]  E. Magalhaes,et al.  About the Royal Society of Chemistry , 2013 .

[36]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[37]  M. Hediger,et al.  The ABCs of membrane transporters in health and disease (SLC series): Introduction , 2013, Molecular aspects of medicine.

[38]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[39]  Milton H. Saier,et al.  The Transporter Classification Database , 2013, Nucleic Acids Res..

[40]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[41]  A. Y. Ye,et al.  Human Transporter Database: Comprehensive Knowledge and Discovery Tools in the Human Transporter Genes , 2014, PloS one.

[42]  Susumu Goto,et al.  Data, information, knowledge and principle: back to metabolism in KEGG , 2013, Nucleic Acids Res..

[43]  S. Misaka,et al.  Green Tea Ingestion Greatly Reduces Plasma Concentrations of Nadolol in Healthy Subjects , 2014, Clinical pharmacology and therapeutics.

[44]  J. Veuthey,et al.  UHPLC determination of catechins for the quality control of green tea. , 2014, Journal of pharmaceutical and biomedical analysis.

[45]  Saskia Preissner,et al.  The Transformer database: biotransformation of xenobiotics , 2013, Nucleic Acids Res..