Two-dimensional Ga$_2$O$_3$ glass: a large scale passivation and protection material for monolayer WS$_2$

Atomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device. Here, we show that the novel, ultrathin Ga$_2$O$_3$ glass is an ideal centimeter-scale coating material that enhances optical performance of the monolayers and protects them against further material deposition. In particular, Ga$_2$O$_3$ capping of commercial grade WS$_2$ monolayers outperforms hBN in both scalability and optical performance at room temperature. These properties make Ga$_2$O$_3$ highly suitable for large scale passivation and protection of monolayer TMDCs in functional heterostructures.

[1]  Pavel P. Kuksa,et al.  Optical and electronic properties of amorphous silicon dioxide by single and double electron spectroscopy , 2020 .

[2]  J. Hone,et al.  Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices , 2020, Science.

[3]  M. Fuhrer,et al.  Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique , 2020, Nature Electronics.

[4]  Kenji Watanabe,et al.  Exciton diffusion in monolayer semiconductors with suppressed disorder , 2019, Physical Review B.

[5]  L. Wirtz,et al.  Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors , 2019, Journal of Applied Physics.

[6]  A. Kis,et al.  Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators , 2019, Nature Communications.

[7]  J. Shan,et al.  Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.

[8]  S. Wereley,et al.  soft matter , 2019, Science.

[9]  B. Chakraborty,et al.  A room-temperature polariton light-emitting diode based on monolayer WS2 , 2019, Nature Nanotechnology.

[10]  S. Russo,et al.  Wafer-Sized Ultrathin Gallium and Indium Nitride Nanosheets through the Ammonolysis of Liquid Metal Derived Oxides. , 2019, Journal of the American Chemical Society.

[11]  Woong Choi,et al.  Photoluminescence quenching in monolayer transition metal dichalcogenides by Al2O3 encapsulation , 2018, Applied Physics Letters.

[12]  Ermin Malic,et al.  Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors , 2018, npj 2D Materials and Applications.

[13]  M. Eickhoff,et al.  Effects of the Fermi level energy on the adsorption of O2 to monolayer MoS2 , 2018, 2D Materials.

[14]  Benjamin J. Carey,et al.  Printing two-dimensional gallium phosphate out of liquid metal , 2018, Nature Communications.

[15]  Fuzhi Huang,et al.  Reliable Synthesis of Large‐Area Monolayer WS2 Single Crystals, Films, and Heterostructures with Extraordinary Photoluminescence Induced by Water Intercalation , 2018, 2307.16629.

[16]  Kenji Watanabe,et al.  Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor , 2018, Nature Communications.

[17]  Roberto Fornari,et al.  ε-Ga 2 O 3 epilayers as a material for solar-blind UV photodetectors , 2018 .

[18]  Kenji Watanabe,et al.  Zeeman Splitting and Inverted Polarization of Biexciton Emission in Monolayer WS_{2}. , 2018, Physical review letters.

[19]  Omid Kavehei,et al.  A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides , 2017, Science.

[20]  Hyunyong Choi,et al.  Sulfur vacancy-induced reversible doping of transition metal disulfides via hydrazine treatment. , 2017, Nanoscale.

[21]  H. Jeong,et al.  Thermodynamically Stable Synthesis of Large‐Scale and Highly Crystalline Transition Metal Dichalcogenide Monolayers and their Unipolar n–n Heterojunction Devices , 2017, Advanced materials.

[22]  N. Zheludev,et al.  Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. , 2017, Nano letters.

[23]  Kenji Watanabe,et al.  Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides , 2017 .

[24]  M. Terrones,et al.  Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide , 2017, Science Advances.

[25]  T. Kamiya,et al.  Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor , 2017 .

[26]  S. Kim,et al.  Effect of Al2O3 Deposition on Performance of Top-Gated Monolayer MoS2-Based Field Effect Transistor. , 2016, ACS applied materials & interfaces.

[27]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[28]  Eugene Demler,et al.  Fermi polaron-polaritons in charge-tunable atomically thin semiconductors , 2016, Nature Physics.

[29]  Xiaodong Xu,et al.  Exciton Dynamics in Monolayer Transition Metal Dichalcogenides. , 2016, Journal of the Optical Society of America. B, Optical physics.

[30]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[31]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[32]  Wei Zhang,et al.  Liquid Metal/Metal Oxide Frameworks , 2014 .

[33]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[34]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[35]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[36]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[37]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[38]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[39]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[40]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[41]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[42]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[43]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[44]  T. Sekiguchi,et al.  Cathodoluminescence of undoped β-Ga2O3 single crystals , 2001 .

[45]  J. Rouviere,et al.  Diffraction Based Strain Mapping in Electron Microscopy , 2020 .

[46]  Plasma-Enhanced Atomic Layer Deposition of HfO 2 on Monolayer , Bilayer , and Trilayer MoS 2 for the Integration of High ‐ κ Dielectrics in Two-Dimensional Devices , 2019 .

[47]  Ting Yu,et al.  Optical Properties of 2D Semiconductor WS2 , 2018 .

[48]  Yanlong Wang,et al.  Optical Properties of 2 D Semiconductor WS 2 , 2017 .

[49]  D. Herrmann,et al.  Synthetic Biodegradable Polymers , 2016 .

[50]  G. Strouse Standard reference material 1751 :: gallium melting-point standard , 2004 .