Raman imaging in geomicrobiology: endolithic phototrophic microorganisms in gypsum from the extreme sun irradiation area in the Atacama Desert

[1]  J. Bréhéret,et al.  Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life , 2015, Astrobiology.

[2]  P. Zelenovskiy,et al.  Internal diamond morphology: Raman imaging of metamorphic diamonds , 2015 .

[3]  C. Marshall,et al.  Challenges Analyzing Gypsum on Mars by Raman Spectroscopy. , 2015, Astrobiology.

[4]  J. DiRuggiero,et al.  Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert , 2015, Front. Microbiol..

[5]  J. Madariaga,et al.  Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging , 2015 .

[6]  R. Vicuña,et al.  Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. , 2015, Environmental microbiology reports.

[7]  Vasilis Valdramidis,et al.  Recent applications of hyperspectral imaging in microbiology. , 2015, Talanta.

[8]  M. Falvey,et al.  The Atacama Surface Solar Maximum , 2015 .

[9]  K. Williford,et al.  Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution's null hypothesis , 2015, Proceedings of the National Academy of Sciences.

[10]  H. Edwards,et al.  Miniaturized Raman instrumentation detects carotenoids in Mars-analogue rocks from the Mojave and Atacama deserts , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  J. Jehlička,et al.  Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states – Significance for Mars studies , 2014 .

[12]  J. Jehlička,et al.  Distribution of scytonemin in endolithic microbial communities from halite crusts in the hyperarid zone of the Atacama Desert, Chile. , 2014, FEMS microbiology ecology.

[13]  J. García‐Ruiz,et al.  The gypsum–anhydrite paradox revisited , 2014 .

[14]  J. Ferrio,et al.  The crystallization water of gypsum rocks is a relevant water source for plants , 2014, Nature Communications.

[15]  N. Cabrol,et al.  Record solar UV irradiance in the tropical Andes , 2014, Front. Environ. Sci..

[16]  M. Roldán,et al.  Fluorescent Fingerprints of Endolithic Phototrophic Cyanobacteria Living within Halite Rocks in the Atacama Desert , 2014, Applied and Environmental Microbiology.

[17]  N. Everall Optimising image quality in 2D and 3D confocal Raman mapping , 2014 .

[18]  A. Hofmann,et al.  CHERTS OF THE BARBERTON GREENSTONE BELT, SOUTH AFRICA: PETROLOGY AND TRACE-ELEMENT GEOCHEMISTRY OF 3.5 TO 3.3 GA OLD SILICIFIED VOLCANICLASTIC SEDIMENTS , 2013 .

[19]  C. Marshall,et al.  Raman hyperspectral imaging of microfossils: potential pitfalls. , 2013, Astrobiology.

[20]  M. Schwanninger,et al.  Raman Imaging of Lignocellulosic Feedstock , 2013 .

[21]  Howell G. M. Edwards,et al.  Practical Considerations for the Field Application of Miniaturized Portable Raman Instrumentation for the Identification of Minerals , 2013, Applied spectroscopy.

[22]  Z. Cardon,et al.  The xanthophyll cycle and NPQ in diverse desert and aquatic green algae , 2013, Photosynthesis Research.

[23]  F. Foucher,et al.  Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions , 2013 .

[24]  R. Sun,et al.  Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy , 2013 .

[25]  J. Elster,et al.  A Novel Staining Protocol for Multiparameter Assessment of Cell Heterogeneity in Phormidium Populations (Cyanobacteria) Employing Fluorescent Dyes , 2013, PloS one.

[26]  F. Foucher,et al.  Raman imaging of metastable opal in carbonaceous microfossils of the 700-800 ma old Draken Formation. , 2013, Astrobiology.

[27]  H. Edwards,et al.  The miniaturized Raman system and detection of traces of life in halite from the Atacama Desert: some considerations for the search for life signatures on Mars. , 2012, Astrobiology.

[28]  Notburga Gierlinger,et al.  Imaging of plant cell walls by confocal Raman microscopy , 2012, Nature Protocols.

[29]  R. Korotev,et al.  Raman imaging of extraterrestrial materials , 2012 .

[30]  O. Beyssac,et al.  Application of Raman-based images in the Earth sciences , 2012 .

[31]  Tuomas Hänninen,et al.  Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. , 2011, Phytochemistry.

[32]  Howland D. T. Jones,et al.  Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae) , 2011, PloS one.

[33]  Zhongbiao Wu,et al.  Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis , 2011 .

[34]  R. Zenobi,et al.  Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. , 2011, Analytical chemistry.

[35]  A. Davila,et al.  Microbial colonization of Ca‐sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars , 2011, Geobiology.

[36]  H. Edwards,et al.  Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  H. Edwards,et al.  Identification of β-carotene in an evaporitic matrix—evaluation of Raman spectroscopic analysis for astrobiological research on Mars , 2009, Analytical and bioanalytical chemistry.

[38]  J. Nienow Extremophiles: Dry Environments (Including Cryptoendoliths) , 2009 .

[39]  Albert. Z. Wang,et al.  Raman, MIR, and NIR Spectroscopic Study of Calcium Sulfates: Gypsum, Bassanite, and Anhydrite , 2009 .

[40]  C. Marshall,et al.  Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. , 2007, Astrobiology.

[41]  Michael Steiger,et al.  Gypsum: a review of its role in the deterioration of building materials , 2007 .

[42]  S. Hamdona,et al.  Crystallization of calcium sulfate dihydrate in the presence of some metal ions , 2007 .

[43]  I-Ming Chou,et al.  Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .

[44]  J. Houston,et al.  Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes , 2006 .

[45]  U. Agarwal,et al.  Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana) , 2006, Planta.

[46]  Notburga Gierlinger,et al.  Chemical Imaging of Poplar Wood Cell Walls by Confocal Raman Microscopy , 2006, Plant Physiology.

[47]  R. Baranski,et al.  Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy , 2005, Planta.

[48]  R. Baranski,et al.  Potential of NIR‐FT‐Raman spectroscopy in natural carotenoid analysis , 2005, Biopolymers.

[49]  F. Garcia-Pichel,et al.  The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria , 1993, Experientia.

[50]  L. Sancho,et al.  Viability of endolithic micro‐organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy , 2004, Journal of microscopy.

[51]  F. Garcia-Pichel Solar Ultraviolet and the Evolutionary History of Cyanobacteria , 1998, Origins of life and evolution of the biosphere.

[52]  H. Edwards,et al.  Raman spectra of carotenoids in natural products. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[53]  W. Voigt,et al.  Crystallization and Phase Stability of CaSO4 and CaSO4 – Based Salts , 2003 .

[54]  W. W. Wood,et al.  Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes , 2002 .

[55]  H. Edwards,et al.  Vibrational raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[56]  S. Scherer,et al.  UV PROTECTION IN CYANOBACTERIA , 1999 .

[57]  Jesse G. Dillon,et al.  SCYTONEMIN, A CYANOBACTERIAL SHEATH PIGMENT, PROTECTS AGAINST UVC RADIATION: IMPLICATIONS FOR EARLY PHOTOSYNTHETIC LIFE , 1999 .

[58]  D. Himmelsbach,et al.  Near-infrared–Fourier-transform–Raman microspectroscopic imaging of flax stems , 1999 .

[59]  L. P. Sarma,et al.  Raman spectroscopic study of phase transitions in natural gypsum , 1998 .

[60]  W. Bilger,et al.  UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune , 1997, Journal of bacteriology.

[61]  S. Sarig,et al.  Thermogravimetric evaluation of the kinetics of the gypsum-hemihydrate-soluble anhydrite transitions , 1994 .

[62]  T. G. Owens,et al.  Carotenoids in photosynthesis: structure and photochemistry , 1991 .

[63]  R. Moncorgé,et al.  Fluorescence analysis of chromium-doped forsterite (Mg/sub 2/SiO/sub 4/) , 1991 .

[64]  D. Siefermann-Harms,et al.  The light-harvesting and protective functions of carotenoids in photosynthetic membranes , 1987 .

[65]  J. Merlin Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems , 1985 .

[66]  J. D. O. Horta Calcrete, gypcrete and soil classification in Algeria , 1980 .

[67]  N. Krinsky Carotenoid protection against oxidation , 1979 .

[68]  D. Gill,et al.  Resonance Raman Scattering of Laser Radiation by Vibrational Modes of Carotenoid Pigment Molecules in Intact Plant Tissues , 1970, Nature.

[69]  D. Robertson,et al.  Role of Carotenoids in Protecting Chlorophyll From Photodestruction. , 1960, Plant physiology.