Moderate deviations analysis of binary hypothesis testing

This work refers to moderate-deviations analysis of binary hypothesis testing. It relies on a concentration inequality for discrete-parameter martingales with bounded jumps, which forms a refinement to the Azuma-Hoeffding inequality. Relations of the analysis to the moderate deviations principle for i.i.d. random variables and the relative entropy are considered.

[1]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[2]  Igal Sason,et al.  On Refined Versions of the Azuma-Hoeffding Inequality with Applications in Information Theory , 2011, ArXiv.

[3]  Emmanuel Abbe,et al.  Local to global geometric methods in information theory , 2008 .

[4]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[5]  A. N. Arkhangel’skii Lower Bounds for Probabilities of Large Deviations for Sums of Independent Random Variables , 1989 .

[6]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[7]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[8]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[9]  Jun Chen,et al.  On the Redundancy of Slepian–Wolf Coding , 2009, IEEE Transactions on Information Theory.

[10]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[11]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[12]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[13]  L. V. Rozovsky,et al.  Estimate from Below for Large-Deviation Probabilities of a Sum of Independent Random Variables with Finite Variances , 2002 .

[14]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[15]  Aaron B. Wagner,et al.  Moderate deviation analysis of channel coding: Discrete memoryless case , 2010, 2010 IEEE International Symposium on Information Theory.

[16]  A. Dembo Moderate Deviations for Martingales with Bounded Jumps , 1996 .

[17]  Imre Csiszár,et al.  Information Theory and Statistics: A Tutorial , 2004, Found. Trends Commun. Inf. Theory.

[18]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[19]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Nicholas Kalouptsidis,et al.  New achievable rates for nonlinear Volterra channels via martingale inequalities , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[22]  S. Verdú,et al.  Channel dispersion and moderate deviations limits for memoryless channels , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Igal Sason On the concentration of the crest factor for OFDM signals , 2011, 2011 8th International Symposium on Wireless Communication Systems.

[24]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[25]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[26]  Richard E. Blahut,et al.  Hypothesis testing and information theory , 1974, IEEE Trans. Inf. Theory.

[27]  C. McDiarmid Concentration , 1862, The Dental register.

[28]  Vincent Y. F. Tan,et al.  Moderate-deviations of lossy source coding for discrete and Gaussian sources , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[29]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .