New memetic self-adaptive firefly algorithm for continuous optimisation

The firefly algorithm is a recent nature-inspired algorithm that is receiving increasing attention from the scientific community during the last few years. One of its most promising variants is given by the memetic self-adaptive firefly algorithm MSA-FFA, recently introduced to solve combinatorial problems. In this paper we propose a modification of the original MSA-FFA for continuous optimisation problems. The most important features of our method are: the problem-dependent selection of control parameters for self-adaptation, a simple population model providing an adequate trade-off between exploration and exploitation, and the use of an adaptive-size Luus-Jaakola random local search. This new method is applied to solve a very difficult real-world continuous optimisation problem arising in geometric modelling and manufacturing. The paper also provides the first reliable, standardised benchmark for this optimisation problem. This benchmark is used for a comparative analysis of our method with respect to some of the most popular nature-inspired algorithms. Our results show that the proposed method outperforms previous approaches including the standard firefly algorithm for most of the instances in the benchmark.

[1]  Andrés Iglesias,et al.  A New Artificial Intelligence Paradigm for Computer-Aided Geometric Design , 2000, AISC.

[2]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[3]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[4]  Janez Brest,et al.  Memetic Self-Adaptive Firefly Algorithm , 2013 .

[5]  Angel Cobo,et al.  Bézier Curve and Surface Fitting of 3D Point Clouds Through Genetic Algorithms, Functional Networks and Least-Squares Approximation , 2007, ICCSA.

[6]  Pei-wei Tsai,et al.  Cat Swarm Optimization , 2006, PRICAI.

[7]  Andrés Iglesias,et al.  Applying functional networks to fit data points from B-spline surfaces , 2001, Proceedings. Computer Graphics International 2001.

[8]  Wenping Wang,et al.  Control point adjustment for B-spline curve approximation , 2004, Comput. Aided Des..

[9]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[10]  Toshinobu Harada,et al.  Automatic knot placement by a genetic algorithm for data fitting with a spline , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[11]  Janez Brest,et al.  Modified firefly algorithm using quaternion representation , 2013, Expert Syst. Appl..

[12]  Andrés Iglesias,et al.  Discrete Bézier Curve Fitting with Artificial Immune Systems , 2013 .

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[15]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[16]  Angel Cobo,et al.  Particle Swarm Optimization for Bézier Surface Reconstruction , 2008, ICCS.

[17]  Xin-She Yang,et al.  Bat algorithm: literature review and applications , 2013, Int. J. Bio Inspired Comput..

[18]  Adrian F. M. Smith,et al.  Automatic Bayesian curve fitting , 1998 .

[19]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[20]  G. E. Hölzle,et al.  Knot placement for piecewise polynomial approximation of curves , 1983 .

[21]  Ahmet Arslan,et al.  Automatic knot adjustment using an artificial immune system for B-spline curve approximation , 2009, Inf. Sci..

[22]  Siti Zaiton Mohd Hashim,et al.  A New Hybrid Firefly Algorithm for Complex and Nonlinear Problem , 2012, DCAI.

[23]  Rajini Aruchamy,et al.  A Comparative Performance Study on Hybrid Swarm Model for Micro array Data , 2011 .

[24]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[25]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[26]  G. Gopalakrishnan Nair,et al.  On the convergence of the LJ search method , 1979 .

[27]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[28]  Miklós Hoffmann Numerical control of kohonen neural network for scattered data approximation , 2004, Numerical Algorithms.

[29]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[30]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[31]  Zhihua Cui,et al.  Artificial plant optimisation algorithm with three-period photosynthesis , 2013, Int. J. Bio Inspired Comput..

[32]  Stefan Voß,et al.  Meta-heuristics: The State of the Art , 2000, Local Search for Planning and Scheduling.

[33]  Andrés Iglesias,et al.  Functional networks for B-spline surface reconstruction , 2004, Future Gener. Comput. Syst..

[34]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[35]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[36]  Jennifer Pittman,et al.  Adaptive Splines and Genetic Algorithms , 2000 .

[37]  Andrés Iglesias,et al.  Iterative two-step genetic-algorithm-based method for efficient polynomial B-spline surface reconstruction , 2012, Inf. Sci..

[38]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[39]  Hyungjun Park,et al.  B-spline curve fitting based on adaptive curve refinement using dominant points , 2007, Comput. Aided Des..

[40]  Gang Zhao,et al.  Adaptive knot placement in B-spline curve approximation , 2005, Comput. Aided Des..

[41]  Ling Jing,et al.  Fitting B-spline curves by least squares support vector machines , 2005, 2005 International Conference on Neural Networks and Brain.

[42]  Andrés Iglesias,et al.  Extending Neural Networks for B-Spline Surface Reconstruction , 2002, International Conference on Computational Science.

[43]  Caiming Zhang,et al.  Adaptive knot placement using a GMM-based continuous optimization algorithm in B-spline curve approximation , 2011, Comput. Aided Des..

[44]  Momin Jamil,et al.  Multimodal function optimisation with cuckoo search algorithm , 2013, Int. J. Bio Inspired Comput..

[45]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[46]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[47]  Hamed Shah-Hosseini,et al.  The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm , 2009, Int. J. Bio Inspired Comput..

[48]  Andrés Iglesias,et al.  Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points , 2012, Inf. Sci..

[49]  Thomas C. M. Lee,et al.  On algorithms for ordinary least squares regression spline fitting: A comparative study , 2002 .

[50]  Andrés Iglesias,et al.  From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM , 2013, TheScientificWorldJournal.

[51]  Hyungjun Park,et al.  An error-bounded approximate method for representing planar curves in B-splines , 2004, Comput. Aided Geom. Des..

[52]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[53]  Xin-She Yang,et al.  Bat algorithm for multi-objective optimisation , 2011, Int. J. Bio Inspired Comput..

[54]  Andrés Iglesias,et al.  A new iterative mutually coupled hybrid GA-PSO approach for curve fitting in manufacturing , 2013, Appl. Soft Comput..

[55]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[56]  Les A. Piegl,et al.  Least-Squares B-Spline Curve Approximation with Arbitary End Derivatives , 2000, Engineering with Computers.

[57]  T. H. I. Jaakola,et al.  Optimization by direct search and systematic reduction of the size of search region , 1973 .

[58]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[59]  Helmut Pottmann,et al.  Fitting B-spline curves to point clouds by curvature-based squared distance minimization , 2006, TOGS.

[60]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[61]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[62]  Michel Bercovier,et al.  Curve and surface fitting and design by optimal control methods , 2001, Comput. Aided Des..

[63]  A. Galvez,et al.  Curve Fitting with RBS Functional Networks , 2008, 2008 Third International Conference on Convergence and Hybrid Information Technology.

[64]  Andrés Iglesias,et al.  Efficient particle swarm optimization approach for data fitting with free knot B-splines , 2011, Comput. Aided Des..

[65]  Michel Bercovier,et al.  Spline Curve Approximation and Design by Optimal Control Over the Knots , 2004, Computing.

[66]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[67]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[68]  H. G. Burchard,et al.  Splines (with optimal knots) are better , 1974 .

[69]  Ralph R. Martin,et al.  Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..

[70]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[71]  Helmut Pottmann,et al.  Industrial geometry: recent advances and applications in CAD , 2005, Comput. Aided Des..

[72]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms: Second Edition , 2010 .

[73]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[74]  Ralph R. Martin,et al.  Constrained fitting in reverse engineering , 2002, Comput. Aided Geom. Des..

[75]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[76]  Mohammad Reza Meybodi,et al.  Some Hybrid models to Improve Firefly Algorithm Performance , 2012 .

[77]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[78]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[79]  Craig A. Tovey,et al.  On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers , 2004, Adapt. Behav..

[80]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[81]  D. Jupp Approximation to Data by Splines with Free Knots , 1978 .

[82]  Praveen Ranjan Srivastava,et al.  Code coverage using intelligent water drop (IWD) , 2012, Int. J. Bio Inspired Comput..

[83]  Saibal K. Pal,et al.  A hybrid Firefly Algorithm using genetic operators for the cryptanalysis of a monoalphabetic substitution cipher , 2011, 2011 World Congress on Information and Communication Technologies.

[84]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[85]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.