Rapid evolution of a bacterial iron acquisition system

Under iron limitation, bacteria scavenge ferric (Fe3+) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram‐negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain‐of‐function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non‐selective uptake components that do not require mutation to accommodate new iron sources.

[1]  P. Graumann,et al.  Real Time Fluorescent Resonance Energy Transfer Visualization of Ferric Pyoverdine Uptake in Pseudomonas aeruginosa , 2007, Journal of Biological Chemistry.

[2]  J. Crawford,et al.  Siderophores from neighboring organisms promote the growth of uncultured bacteria. , 2010, Chemistry & biology.

[3]  U. Koziol,et al.  A new small regulatory protein, HmuP, modulates haemin acquisition in Sinorhizobium meliloti , 2010, Microbiology.

[4]  E. R. Rocha,et al.  Anaerobic utilization of Fe(III)‐xenosiderophores among Bacteroides species and the distinct assimilation of Fe(III)‐ferrichrome by Bacteroides fragilis within the genus , 2017, MicrobiologyOpen.

[5]  M. Marahiel,et al.  Siderophore-Based Iron Acquisition and Pathogen Control , 2007, Microbiology and Molecular Biology Reviews.

[6]  S. Tabata,et al.  Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[7]  H. Vogel,et al.  Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view , 2010, BioMetals.

[8]  H. Vogel,et al.  Structural biology of bacterial iron uptake. , 2008, Biochimica et biophysica acta.

[9]  M. R. O'Brian,et al.  HmuP Is a Coactivator of Irr-Dependent Expression of Heme Utilization Genes in Bradyrhizobium japonicum , 2012, Journal of Bacteriology.

[10]  G. Petrikkos,et al.  The Role of Iron and Chelators on Infections in Iron Overload and Non Iron Loaded Conditions: Prospects for the Design of New Antimicrobial Therapies , 2010, Hemoglobin.

[11]  H. Mobley,et al.  Immunization with the Yersiniabactin Receptor, FyuA, Protects against Pyelonephritis in a Murine Model of Urinary Tract Infection , 2013, Infection and Immunity.

[12]  M. Guerinot,et al.  The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors , 1996, Journal of bacteriology.

[13]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[14]  E. Fabiano,et al.  Heme compounds as iron sources for nonpathogenic Rhizobium bacteria , 1997, Journal of bacteriology.

[15]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[16]  K. Zengler,et al.  Tapping into microbial diversity , 2004, Nature Reviews Microbiology.

[17]  R. Kadner,et al.  Touch and go: tying TonB to transport , 2003, Molecular microbiology.

[18]  C. Alteri,et al.  Mucosal Immunization with Iron Receptor Antigens Protects against Urinary Tract Infection , 2009, PLoS pathogens.

[19]  H. Hennecke,et al.  Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum , 2001, Molecular microbiology.

[20]  Felix Hauser,et al.  Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism , 2006, Molecular microbiology.

[21]  M. Fulston,et al.  A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. , 2000, The Journal of antibiotics.

[22]  H. Mobley,et al.  Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection , 2016, Proceedings of the National Academy of Sciences.

[23]  J. Imlay,et al.  Superoxide poisons mononuclear iron enzymes by causing mismetallation , 2013, Molecular microbiology.

[24]  H. Panek,et al.  KatG Is the Primary Detoxifier of Hydrogen Peroxide Produced by Aerobic Metabolism in Bradyrhizobium japonicum , 2004, Journal of bacteriology.

[25]  S. Payne,et al.  Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments , 2015, Microbiology and Molecular Reviews.

[26]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[27]  S. Buchanan,et al.  TonB-dependent transporters: regulation, structure, and function. , 2010, Annual review of microbiology.

[28]  M. Husson,et al.  Comparison of iron uptake in different Helicobacter species. , 1999, Research in microbiology.

[29]  M. R. O'Brian,et al.  The Bradyrhizobium japonicum frcB Gene Encodes a Diheme Ferric Reductase , 2011, Journal of bacteriology.

[30]  K. Poole,et al.  Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter. , 2009, Microbiology.

[31]  R. Hassett,et al.  The Bacterial Irr Protein Is Required for Coordination of Heme Biosynthesis with Iron Availability* , 1998, The Journal of Biological Chemistry.

[32]  David P. Chimento,et al.  Comparative structural analysis of TonB‐dependent outer membrane transporters: Implications for the transport cycle , 2005, Proteins.

[33]  V. Braun,et al.  Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. , 1979, European journal of biochemistry.

[34]  M. Guerinot,et al.  Siderophore Utilization by Bradyrhizobium japonicum , 1993, Applied and environmental microbiology.

[35]  J. Faraldo-Gómez,et al.  Acquisition of siderophores in Gram-negative bacteria , 2003, Nature Reviews Molecular Cell Biology.

[36]  V. Braun,et al.  Sideromycins: tools and antibiotics , 2009, BioMetals.

[37]  V. Braun,et al.  Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium , 1983, Journal of bacteriology.

[38]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[39]  D. Zurawski,et al.  Antibacterial Activities of Iron Chelators against Common Nosocomial Pathogens , 2012, Antimicrobial Agents and Chemotherapy.

[40]  M. R. O'Brian,et al.  Aerobic growth and respiration of a delta-aminolevulinic acid synthase (hemA) mutant of Bradyrhizobium japonicum , 1991, Journal of bacteriology.

[41]  M. R. O'Brian,et al.  The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis* , 2016, The Journal of Biological Chemistry.

[42]  D. Morton,et al.  Utilization of enterobactin and other exogenous iron sources by Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus. , 1990, Journal of general microbiology.

[43]  K. Rohde,et al.  Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. , 2003, Frontiers in bioscience : a journal and virtual library.

[44]  M. R. O'Brian,et al.  Positive Control of Ferric Siderophore Receptor Gene Expression by the Irr Protein in Bradyrhizobium japonicum , 2008, Journal of bacteriology.

[45]  Christoph Gille,et al.  STRAP: editor for STRuctural Alignments of Proteins , 2001, Bioinform..

[46]  I. Schalk,et al.  Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways , 2013, Amino Acids.

[47]  Yongjun Gao,et al.  Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics , 2015, Journal of bacteriology.