Measurement Error Regression with Unknown Link: Dimension Reduction and Data Visualization

Abstract A general nonlinear regression problem is considered with measurement error in the predictors. We assume that the response is related to an unknown linear combination of a multidimensional predictor through an unknown link function. Instead of observing the predictor, we instead observe a surrogate with the property that its expectation is linearly related to the true predictor with constant variance. We identify an important transformation of the surrogate variable. Using this transformed variable, we show that if one proceeds with the usual analysis ignoring measurement error, then both ordinary least squares and sliced inverse regression yield estimates which consistently estimate the true regression parameter, up to a constant of proportionality. We derive the asymptotic distribution of the estimates. A simulation study is conducted applying sliced inverse regression in this context.

[1]  Daniel O. Stram,et al.  The Errors-in-Variables Problem: Considerations Provided by Radiation Dose-Response Analyses of the A-Bomb Survivor Data , 1992 .

[2]  Raymond J. Carroll,et al.  Approximate Quasi-likelihood Estimation in Models with Surrogate Predictors , 1990 .

[3]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[4]  Raymond J. Carroll,et al.  An Asymptotic Theory for Sliced Inverse Regression , 1992 .

[5]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[6]  Hung Chen,et al.  ESTIMATION OF A PROJECTION-PURSUIT TYPE REGRESSION MODEL' , 1991 .

[7]  Clifford H. Spiegelman,et al.  Two Pitfalls of Using Standard Regression Diagnostics When Both X and Y Have Measurement Error , 1986 .

[8]  Raymond J. Carroll,et al.  On errors-in-variables for binary regression models , 1984 .

[9]  Ker-Chau Li,et al.  On almost Linearity of Low Dimensional Projections from High Dimensional Data , 1993 .

[10]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[11]  B Rosner,et al.  Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. , 2006, Statistics in medicine.

[12]  Stephen Senn,et al.  Covariance analysis in generalized linear measurement error models. , 1989, Statistics in medicine.

[13]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[14]  Roy E. Welsch,et al.  Regression diagnostics with dynamic graphics (with discussion) , 1989 .

[15]  Ker-Chau Li,et al.  Regression Analysis Under Link Violation , 1989 .

[16]  R. Dennis Cook,et al.  Regression Diagnostics With Dynamic Graphics , 1989 .

[17]  P. Hall On Projection Pursuit Regression , 1989 .

[18]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[19]  Raymond J. Carroll,et al.  Semiparametric Estimation in Logistic Measurement Error Models , 1989 .

[20]  Raymond J. Carroll,et al.  Score Tests in Generalized Linear Measurement Error Models , 1990 .

[21]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[22]  Thomas R. Fleming,et al.  A Nonparametric Method for Dealing with Mismeasured Covariate Data , 1991 .

[23]  Anastasios A. Tsiatis,et al.  The asymptotic relative efficiency of score tests in a generalized linear model with surrogate covariates , 1988 .

[24]  L A Stefanski,et al.  A Measurement Error Model for Binary and Ordinal Regression Title: a Measurement Error Model for Binary and Ordinal Regression , 2022 .

[25]  Ker-Chau Li Sliced inverse regression for dimension reduction (with discussion) , 1991 .