Coherent optical CDMA (OCDMA) systems used for high-capacity optical fiber networks-system description, OTDMA comparison, and OCDMA/WDMA networking

As the wavelength resource in mainstream wavelength-division multiple-access (WDMA) systems becomes exhausted, and the bit-rate limitation within a single wavelength bandwidth is reached, alternative approaches to implementing a high-capacity optical fiber network need to be investigated. Coherent optical code-division multiple-access (OCDMA) systems, that can access many users simultaneously and asynchronously (or synchronously) across the single wavelength and same timeslot via spread spectrum techniques, are one alternative. In the longer term, the advantages of OCDMA in tandem with WDMA (OCDMA/WDMA) networks are compelling and worthy of further investigation in the goal of realising an extensive, flexible, high throughput and easily managed optical telecommunication infrastructure. In this paper, coherent OCDMA systems are introduced, and the issues of the system implementation within high-capacity optical fiber networks are discussed. A performance comparison between OCDMA and OTDMA systems is then carried out, both of them using narrow pulse laser sources. An optical fiber network utilizing coherent OCDMA techniques as one layer of a multiplexing hierarchy, in tandem with WDMA, is illustrated and a possible hybrid OCDMA/WDMA network architecture (and its performances and advantages) is described.

[1]  Sergio Verdú,et al.  Minimum probability of error for asynchronous Gaussian multiple-access channels , 1986, IEEE Trans. Inf. Theory.

[2]  S. Kawanishi,et al.  Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier , 1993 .

[3]  P. McLane,et al.  Spread spectrum for indoor digital radio , 1987, IEEE Communications Magazine.

[4]  Roberto Padovani,et al.  Increased Capacity Using CDMA for Mobile Satellite Communication , 1990, IEEE J. Sel. Areas Commun..

[5]  Hidehiko Takara,et al.  1.4 Tbit/s (200 Gbit/s × 7 ch) 50 km optical transmission experiment , 1997 .

[6]  Haim Kobrinski,et al.  Application of Wavelength Division Multiplexing to Communication Network Architectures , 1986, ICC.

[7]  Wei Huang,et al.  Code tracking in optical pulse CDMA through coherent correlation demodulation , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[8]  Alan E. Willner,et al.  All-optical data format conversions and reconversions between the wavelength and time domains for dynamically reconfigurable WDM networks , 1996 .

[9]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[10]  H. Takara,et al.  3 Tbit/s (160 Gbit/s/spl times/19 channel) optical TDM and WDM transmission experiment , 1999 .

[11]  Hirokazu Kubota,et al.  Straight-line soliton data transmission at 20 Gbit/s beyond Gordon-Haus limit , 1994 .

[12]  H. Vincent Poor,et al.  Effects of Laser Phase Drift on Coherent Optical CDMA , 1995, IEEE J. Sel. Areas Commun..

[13]  Steven K. Korotky,et al.  1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers , 1989 .

[14]  O. Kamatani,et al.  All-optical time division multiplexing using four-wave mixing , 1994 .

[15]  I Van De Voorde,et al.  Full service optical access networks: ATM transport on passive optical networks , 1997 .

[16]  M. Nakagawa,et al.  A modified multi-stage co-channel interference cancellation in asynchronous CDMA systems , 1994, 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future..

[17]  I. Andonovic,et al.  Optimal performance of coherent optical pulse CDMA systems based on code and phase synchronisation and interference cancellation , 1998 .

[18]  P. Jeppesen,et al.  Experimental verification of a very low crosstalk wavelength router construction using arrayed-waveguide grating multi/demultiplexers , 1999, 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455).

[19]  M. Saruwatari,et al.  Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier , 1994 .

[20]  Moshe Tur,et al.  Decision-directed PLL for coherent optical pulse CDMA systems in the presence of multiuser interference, laser phase noise, and shot noise , 1998 .

[21]  Kazuhiro Oda,et al.  100 channel optical FDM technology and its applications to optical FDM channel-based networks , 1993 .

[22]  Guu-chang Yang,et al.  Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks , 1997, IEEE Trans. Commun..

[23]  Chung-Sheng Li,et al.  Crosstalk and interference penalty in all-optical networks using static wavelength routers , 1996 .

[24]  R. Manning,et al.  20 Gbit/s all-optical clock recovery using semiconductor nonlinearity , 1994 .

[25]  M. Nakazawa,et al.  Soliton transmission control in time and frequency domains , 1993 .

[26]  Rodney S. Tucker,et al.  All-optical WDM to TDM transmultiplexer , 1994 .

[27]  A. Chraplyvy Limitations on lightwave communications imposed by optical-fiber nonlinearities , 1990 .

[28]  Wei Huang,et al.  Coherent optical pulse CDMA systems based on coherent correlation detection , 1999, IEEE Trans. Commun..

[29]  K. Oda,et al.  Impact of crosstalk in an arrayed-waveguide multiplexer on N/spl times/N optical interconnection , 1996 .

[30]  J. Kahn,et al.  1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers , 1989, IEEE Photonics Technology Letters.

[31]  Pierre A. Humblet,et al.  Models of Blocking Probability in All-Optical Networks with and Without Wavelength Changers , 1995, IEEE J. Sel. Areas Commun..

[32]  Charles A. Brackett,et al.  Dense Wavelength Division Multiplexing Networks: Principles and Applications , 1990, IEEE J. Sel. Areas Commun..

[33]  Michael B. Pursley Spread-Spectrum Multiple-Access Communications , 1981 .

[34]  Moshe Tur,et al.  Decision-directed PLL used for coherent optical pulse CDMA systems in the presence of multiuser interference, laser phase noise and shot noise , 1998, 1988 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications - Proceedings. Spread Technology to Africa (Cat. No.98TH8333).

[35]  S. Kawanishi,et al.  Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier , 1996 .

[36]  Masao Nakagawa,et al.  Nonlinear effect of direct-sequence CDMA in optical transmission , 1994, Proceedings of IEEE 3rd International Symposium on Spread Spectrum Techniques and Applications (ISSSTA'94).

[37]  H. Mawatari,et al.  10 Gbit/s optical BPSK homodyne detection experiment with solitary DFB laser diodes , 1995 .

[38]  T. Imai,et al.  340 Gbit/s (34 × 10 Gbit/s) WDM transmission over 8,514 km using broadband gain equalisation technique for transoceanic systems , 1999 .

[39]  Vincent W. S. Chan,et al.  All-Optical Network Consortium - Ultrafast TDM Networks (Invited Paper) , 1996, IEEE J. Sel. Areas Commun..

[40]  S. Kawanishi,et al.  Prescaled 6.3 GHz clock recovery from 50 Gbit/s TDM optical signal with 50 GHz PLL using four-wave mixing in a travelling-wave laser diode optical amplifier , 1994 .

[41]  Paul R. Prucnal,et al.  Transparent Optical Networks with Time-Division Multiplexing (Invited Paper) , 1996, IEEE J. Sel. Areas Commun..

[42]  Chunming Qiao,et al.  Efficient distributed control protocols for WDM all-optical networks , 1997, Proceedings of Sixth International Conference on Computer Communications and Networks.

[43]  P. D. Yeates,et al.  40 Gbit/s/spl times/25 ch (1 Tbit/s aggregate capacity) WDM transmission over 342 km of fibre , 1999 .

[44]  G. Vannucci Combining frequency-division and code-division multiplexing in a high-capacity optical network , 1989, IEEE Network.

[45]  Andrew D. Ellis,et al.  Optical time division multiplexing: systems and networks , 1994, IEEE Communications Magazine.

[46]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[47]  Paul E. Green,et al.  Optical Networking Update (Invited Paper) , 1996, IEEE J. Sel. Areas Commun..

[48]  Hiroji Masuda,et al.  50 GHz spaced, 32/spl times/10 Gbit/s dense WDM transmission in zero-dispersion region over 640 km of dispersion-shifted fibre with multiwavelength distributed Raman amplification , 1999 .

[49]  D. Mestdagh Fundamentals of multiaccess optical fiber networks , 1995 .

[50]  Ryuji Kohno,et al.  New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communications systems , 1997 .

[51]  Martin de Prycker,et al.  Asynchronous Transfer Mode, Solution for Broadband Isdn , 1991 .

[52]  W. C. Y. Lee,et al.  Overview of cellular CDMA , 1991 .

[53]  B. Kasper,et al.  4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers , 1990, IEEE Photonics Technology Letters.

[54]  Andrew D. Ellis,et al.  Three-node, 40 Gbit/s OTDM network experiment using electro-optic switches , 1994 .

[55]  Adrian Segall,et al.  Distributed network control for wavelength routed optical networks , 1996, Proceedings of IEEE INFOCOM '96. Conference on Computer Communications.

[56]  K.-I. Kitayama,et al.  Code acquisition in optical pulse CDMA utilizing coherent correlation demodulation , 1997, GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record.

[57]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[58]  D. M. Spirit,et al.  Unrepeatered transmission over 80km standard fibre at 40Gbit/s , 1994 .

[59]  Pierre A. Humblet,et al.  On the number of wavelengths and switches in all-optical networks , 1994, IEEE Trans. Commun..

[60]  Gerard J. Foschini,et al.  Using spread-spectrum in a high-capacity fiber-optic local network , 1988 .