The construction of self-similar tilings

We give a construction of a self-similar tiling of the plane with any prescribed expansion coefficient λɛℂ (satisfying the necessary algebraic condition of being a complex Perron number).For any integerm>1 we show that there exists a self-similar tiling with 2π/m-rotational symmetry group and expansion λ if and only if either λ or λe2π∿/m is a complex Perron number for which e2π∿/m is in ℚ[λ], respectivelyQ[λe2πı/m].

[1]  R. Adler,et al.  Entropy, a complete metric invariant for automorphisms of the torus. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Brenda Praggastis Markov partitions for hyperbolic toral automorphisms , 1992 .

[3]  A. Vershik Arithmetic isomorphism of hyperbolic toral automorphisms and sofic shifts , 1992 .

[4]  F. Michel Dekking,et al.  Replicating Superfigures and Endomorphisms of Free Groups , 1982, J. Comb. Theory, Ser. A.

[5]  Charles Radin,et al.  Space tilings and local isomorphism , 1992 .

[6]  Andrew Vince,et al.  Replicating Tessellations , 1993, SIAM J. Discret. Math..

[7]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[8]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[9]  William J. Gilbert Radix representations of quadratic fields , 1981 .

[10]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[11]  B. M. Fulk MATH , 1992 .

[12]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[13]  D. Lind The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.

[14]  Y. Sinai,et al.  Construction of Markov partitions , 1968 .

[15]  Christoph Bandt,et al.  Self-similar sets. V. Integer matrices and fractal tilings of ⁿ , 1991 .

[16]  R. Kenyon Inflationary tilings with a similarity structure , 1994 .

[17]  Solomon W. Golomb Replicating Figures in the Plane , 1964 .