Patch-Based Progressive 3D Point Set Upsampling

We present a detail-driven deep neural network for point set upsampling. A high-resolution point set is essential for point-based rendering and surface reconstruction. Inspired by the recent success of neural image super-resolution techniques, we progressively train a cascade of patch-based upsampling networks on different levels of detail end-to-end. We propose a series of architectural design contributions that lead to a substantial performance boost. The effect of each technical contribution is demonstrated in an ablation study. Qualitative and quantitative experiments show that our method significantly outperforms the state-of-the-art learning-based and optimazation-based approaches, both in terms of handling low-resolution inputs and revealing high-fidelity details.

[1]  Baoquan Chen,et al.  PointCNN: Convolution On $\mathcal{X}$-Transformed Points , 2018 .

[2]  Dong Tian,et al.  Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Levent Burak Kara,et al.  Data-driven Upsampling of Point Clouds , 2019, Comput. Aided Des..

[4]  Daniel Cohen-Or,et al.  Parameterization-free projection for geometry reconstruction , 2007, ACM Trans. Graph..

[5]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[6]  Mariette Yvinec,et al.  Triangulations in CGAL , 2002, Comput. Geom..

[7]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[8]  Nassir Navab,et al.  Fully-Convolutional Point Networks for Large-Scale Point Clouds , 2018, ECCV.

[9]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[10]  Subhransu Maji,et al.  Multiresolution Tree Networks for 3D Point Cloud Processing , 2018, ECCV.

[11]  Mathieu Aubry,et al.  AtlasNet: A Papier-M\^ach\'e Approach to Learning 3D Surface Generation , 2018, CVPR 2018.

[12]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Binh-Son Hua,et al.  Pointwise Convolutional Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Matthias Zwicker,et al.  Deep points consolidation , 2015, ACM Trans. Graph..

[16]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[17]  Daniel Cohen-Or,et al.  Consolidation of unorganized point clouds for surface reconstruction , 2009, ACM Trans. Graph..

[18]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[19]  Daniel Cohen-Or,et al.  EC-Net: an Edge-aware Point set Consolidation Network , 2018, ECCV.

[20]  C. Qi Deep Learning on Point Sets for 3 D Classification and Segmentation , 2016 .

[21]  Matthias Zwicker,et al.  Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network , 2018, AAAI.

[22]  Yifan Wang,et al.  A Fully Progressive Approach to Single-Image Super-Resolution , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[23]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[24]  Shubham Agrawal,et al.  High Fidelity Semantic Shape Completion for Point Clouds Using Latent Optimization , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[25]  Daniel Cohen-Or,et al.  Edge-aware point set resampling , 2013, ACM Trans. Graph..

[26]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[27]  Cewu Lu,et al.  PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation , 2018, ArXiv.

[28]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[29]  Kilian Q. Weinberger,et al.  Deep Networks with Stochastic Depth , 2016, ECCV.

[30]  Bastian Leibe,et al.  Know What Your Neighbors Do: 3D Semantic Segmentation of Point Clouds , 2018, ECCV Workshops.

[31]  Narendra Ahuja,et al.  Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Paolo Cignoni,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes , 2022 .

[33]  Thomas S. Huang,et al.  Balanced Two-Stage Residual Networks for Image Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[34]  Yang Zhao,et al.  Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000 , 2018 .

[35]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[36]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[39]  Baoquan Chen,et al.  PointCNN , 2018, NIPS 2018.

[40]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[41]  Kyoung Mu Lee,et al.  Accurate Image Super-Resolution Using Very Deep Convolutional Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Timo Ropinski,et al.  Monte Carlo convolution for learning on non-uniformly sampled point clouds , 2018, ACM Trans. Graph..

[43]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[45]  Yifan Xu,et al.  SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters , 2018, ECCV.

[46]  Martial Hebert,et al.  PCN: Point Completion Network , 2018, 2018 International Conference on 3D Vision (3DV).

[47]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[48]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[51]  Daniel Rueckert,et al.  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Dani Lischinski,et al.  Multi-scale Context Intertwining for Semantic Segmentation , 2018, ECCV.

[53]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Daniel Cohen-Or,et al.  PU-Net: Point Cloud Upsampling Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[55]  Daniel Cohen-Or,et al.  P2P-NET , 2018, ACM Trans. Graph..

[56]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[57]  Maks Ovsjanikov,et al.  PCPNet Learning Local Shape Properties from Raw Point Clouds , 2017, Comput. Graph. Forum.

[58]  Slobodan Ilic,et al.  PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors , 2018, ECCV.

[59]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[60]  Gabriel Taubin,et al.  A benchmark for surface reconstruction , 2013, TOGS.

[61]  Yang Liu,et al.  Adaptive O-CNN: A Patch-based Deep Representation of 3D Shapes , 2018 .