Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones
暂无分享,去创建一个
Nezam Mahdavi-Amiri | Hossein Mansouri | Maryam Zangiabadi | Soodabeh Asadi | Zsolt Darvay | N. Mahdavi-Amiri | M. Zangiabadi | H. Mansouri | Zsolt Darvay | S. Asadi
[1] Goran Lesaja,et al. Interior-point methods for Cartesian P *(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions , 2012, Optim. Methods Softw..
[2] Hongwei Liu,et al. A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming , 2013, J. Optim. Theory Appl..
[3] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[4] Florian A. Potra,et al. A Large-Step Infeasible-Interior-Point Method for the P*-Matrix LCP , 1997, SIAM J. Optim..
[5] Michael J. Todd,et al. Convergence of infeasible-interior-point methods for self-scaled conic programming , 2003 .
[6] Farid Alizadeh,et al. Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..
[7] Florian A. Potra,et al. Predictor-corrector algorithm for solvingP*(κ)-matrix LCP from arbitrary positive starting points , 1996, Math. Program..
[8] H. Upmeier. ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .
[9] Hongwei Liu,et al. A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones , 2015, Numerical Algorithms.
[10] Florian A. Potra,et al. On a Class of Superlinearly Convergent Polynomial Time Interior Point Methods for Sufficient LCP , 2009, SIAM J. Optim..
[11] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[12] Hongwei Liu,et al. Infeasible Mehrotra-Type Predictor-Corrector Interior-Point Algorithm for the Cartesian P *(κ)-LCP Over Symmetric Cones , 2014 .
[13] Shinji Mizuno,et al. On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..
[14] B. C. Eaves,et al. Equivalence of LCP and PLS , 1981, Math. Oper. Res..
[15] Hossein Mansouri,et al. On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones , 2016, Optim. Methods Softw..
[16] Michael C. Ferris,et al. Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..
[17] L. Faybusovich. Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .
[18] Osman Güler,et al. Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..
[19] Zs. Darvay,et al. An infeasible full-NT step IPM for horizontal linear complementarity problem over Cartesian product of symmetric cones , 2017 .
[20] Bharath Kumar Rangarajan,et al. Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..
[21] Kok Lay Teo,et al. A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization , 2013, Appl. Math. Comput..
[22] Shuzhong Zhang,et al. An O(\sqrtn L) Iteration Primal-dual Path-following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP , 2005, SIAM J. Optim..
[23] Guoyong Gu,et al. Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..
[24] Yin Zhang,et al. On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..
[25] Yang Li,et al. A New Class of Large Neighborhood Path-Following Interior Point Algorithms for Semidefinite Optimization with O(√n log (Tr(X0S0)/ε)) Iteration Complexity , 2010, SIAM J. Optim..
[26] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[27] Goran Lesaja,et al. Full Nesterov–Todd step feasible interior-point method for the Cartesian P *(κ)-SCLCP , 2013, Optim. Methods Softw..