Large-Neighborhood Infeasible Predictor–Corrector Algorithm for Horizontal Linear Complementarity Problems over Cartesian Product of Symmetric Cones

We present an infeasible interior-point predictor–corrector algorithm, based on a large neighborhood of the central path, for horizontal linear complementarity problem over the Cartesian product of symmetric cones. Throughout the paper, we assume that a certain property holds for the above-mentioned problem. This condition is equivalent to the property of sufficiency for the particular case of horizontal linear complementarity problem. The polynomial convergence is shown for the commutative class of search directions. We specialize our algorithm further by prescribing some scaling elements and also consider the case of feasible starting points. We believe this to be the first interior-point method based on large neighborhoods for the problem in consideration.

[1]  Goran Lesaja,et al.  Interior-point methods for Cartesian P *(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions , 2012, Optim. Methods Softw..

[2]  Hongwei Liu,et al.  A New Wide Neighborhood Primal–Dual Infeasible-Interior-Point Method for Symmetric Cone Programming , 2013, J. Optim. Theory Appl..

[3]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[4]  Florian A. Potra,et al.  A Large-Step Infeasible-Interior-Point Method for the P*-Matrix LCP , 1997, SIAM J. Optim..

[5]  Michael J. Todd,et al.  Convergence of infeasible-interior-point methods for self-scaled conic programming , 2003 .

[6]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[7]  Florian A. Potra,et al.  Predictor-corrector algorithm for solvingP*(κ)-matrix LCP from arbitrary positive starting points , 1996, Math. Program..

[8]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[9]  Hongwei Liu,et al.  A Mizuno-Todd-Ye predictor-corrector infeasible-interior-point method for linear programming over symmetric cones , 2015, Numerical Algorithms.

[10]  Florian A. Potra,et al.  On a Class of Superlinearly Convergent Polynomial Time Interior Point Methods for Sufficient LCP , 2009, SIAM J. Optim..

[11]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[12]  Hongwei Liu,et al.  Infeasible Mehrotra-Type Predictor-Corrector Interior-Point Algorithm for the Cartesian P *(κ)-LCP Over Symmetric Cones , 2014 .

[13]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[14]  B. C. Eaves,et al.  Equivalence of LCP and PLS , 1981, Math. Oper. Res..

[15]  Hossein Mansouri,et al.  On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones , 2016, Optim. Methods Softw..

[16]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[17]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[18]  Osman Güler,et al.  Barrier Functions in Interior Point Methods , 1996, Math. Oper. Res..

[19]  Zs. Darvay,et al.  An infeasible full-NT step IPM for horizontal linear complementarity problem over Cartesian product of symmetric cones , 2017 .

[20]  Bharath Kumar Rangarajan,et al.  Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..

[21]  Kok Lay Teo,et al.  A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization , 2013, Appl. Math. Comput..

[22]  Shuzhong Zhang,et al.  An O(\sqrtn L) Iteration Primal-dual Path-following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP , 2005, SIAM J. Optim..

[23]  Guoyong Gu,et al.  Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..

[24]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[25]  Yang Li,et al.  A New Class of Large Neighborhood Path-Following Interior Point Algorithms for Semidefinite Optimization with O(√n log (Tr(X0S0)/ε)) Iteration Complexity , 2010, SIAM J. Optim..

[26]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[27]  Goran Lesaja,et al.  Full Nesterov–Todd step feasible interior-point method for the Cartesian P *(κ)-SCLCP , 2013, Optim. Methods Softw..