Treatment of air polluted with high concentrations of toluene and xylene in a pilot-scale biofilter

Air biofiltration is now under active consideration for the removal of the volatile organic compounds from air polluted streams. In order to investigate the performance of this newly developed technology, a biofiltration pilot unit was operated for a continuous period of 8 months. The biofilter column was packed with commercially conditioned peat. At start-up, the filter bed was inoculated with four species of microorganisms. The resulting biofilter was fed with air contaminated with toluene, xylene or a mixture of toluene and xylene. The maximum elimination capacities attained were 165 g m−3 h−1 for toluene, 66 g m−3 h−1 for xylene and 115 g m−3 h−1 for the mixture of toluene and xylene. These specific performances exceed the values published in the technical and commercial literature for similar processes. Xylene isomers were degraded in decreasing order of reactivity, m-xylene, p-xylene, o-xylene. In the case of air polluted with a toluene and xylene mixture, it was noticed that the metabolism of toluene biodegradation was inhibited by the presence of xylene. Characterization of the biofilm microbial populations after several weeks of operation showed that the dominant strains among the isolated culturable strains from the biofilm, even if different from the initially inoculated strains, had at least one physiological property favoring degradation of aromatic organic rings. The performance of the biofilter was found to be dependent on the temperature of the filter media and the pressure drop through the bed. Finally, a steady state mathematical model was tested in order to theoretically describe the experimental results. This model is used to illustrate the operating diffusion and reaction regimes at steady state for the case of each pollutant. © 1998 Society of Chemical Industry