Image quality analysis for dual energy subtraction imaging with a femtosecond laser-based hard X-ray source

We present a study of image quality for dual energy subtraction imaging using an iodinated contrast agent and a femtosecond laser-based hard X-ray source. The INRS CPA laser (400 fs pulse focused on solid targets in a 3 /spl mu/m spot at 4 /spl times/ 10/sup 18/ W cm/sup -2/) was used to create a bright hard X-ray source (conversion efficiency of 10/sup -5/ in the characteristic K/sub /spl prop// line emission, 12 /spl mu/m X-ray source diameter). A model of image quality has been developed and been benchmarked with specific experiments using specially made angiography phantoms.

[1]  J. Gauthier,et al.  Hot-electron distribution functions in a subpicosecond laser interaction with solid targets of varying initial gradient scale lengths. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Sune Svanberg,et al.  Elemental biological imaging by differential absorption with a laser-produced x-ray source , 1996 .

[3]  Jean-Claude Kieffer,et al.  Hard x-ray emission in high intensity femtosecond laser–target interaction , 1999 .

[4]  O. Peyrusse,et al.  Picosecond dynamics of a hot solid-density plasma , 1996 .

[5]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[6]  Gibbon Efficient production of fast electrons from femtosecond laser interaction with solid targets. , 1994, Physical review letters.

[7]  Spectra and angular distributions of electrons emitted from laser‐produced plasmas , 1976 .

[8]  G. Mourou,et al.  X‐ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2 , 1995 .

[9]  Michael D. Perry,et al.  Experimental Measurements of Hot Electrons Generated by Ultraintense ( > 10 19 W / cm 2 ) Laser-Plasma Interactions on Solid-Density Targets , 1998 .

[10]  A Fenster,et al.  Experimental and theoretical x-ray imaging performance comparison of iodine and lanthanide contrast agents. , 1993, Medical physics.

[11]  W.-R. Dix,et al.  Intravenous coronary angiography with synchrotron radiation , 1998 .

[12]  W. Priedhorsky,et al.  Hard-X-Ray Measurements of 10.6-μm Laser-Irradiated Targets , 1981 .

[13]  Yasushi Fujimoto,et al.  Generation of picosecond hard x rays by tera watt laser focusing on a copper target , 1998 .

[14]  S. C. Prasad,et al.  Laser-based microfocused x-ray source for mammography: feasibility study. , 1997, Medical physics.

[15]  H. Zeman,et al.  Synchrotron radiation coronary angiography with a dual-beam, dual-detector imaging system , 1990 .

[16]  R. H. Pratt,et al.  Electron bremsstrahlung angular distributions in the 1-500 keV energy range , 1979 .

[17]  R. Fabbro,et al.  Hot electrons behavior in laser-plane target experiments , 1982 .

[18]  G. Malka,et al.  Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser , 1997 .

[19]  G. McCall,et al.  Calculation of X-ray bremsstrahlung and characteristic line emission produced by a Maxwellian electron distribution , 1982 .

[20]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[21]  Forster,et al.  Yield optimization and time structure of femtosecond laser plasma kalpha sources , 2000, Physical review letters.

[22]  Teubner,et al.  Absorption and hot electron production by high intensity femtosecond uv-laser pulses in solid targets. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Robert J. Harrach,et al.  Simple model of energy deposition by suprathermal electrons in laser-irradiated targets , 1981 .

[24]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[25]  Malcolm G. Haines,et al.  SHORT-PULSE HIGH-INTENSITY LASER-GENERATED FAST ELECTRON TRANSPORT INTO THICK SOLID TARGETS , 1997 .

[26]  Anders Persson,et al.  Imaging using hard X-rays from a laser-produced plasma , 1995 .

[27]  P M Bell,et al.  Time-gated imaging with an ultrashort-pulse, laser-produced-plasma x-ray source. , 1995, Optics letters.

[28]  Jeremiah Brackbill,et al.  Magnetic-field--induced surface transport on laser-irradiated foils , 1982 .

[29]  D. J. Johnson,et al.  X-ray emission spectra from high-power-laser: produced plasmas , 1975 .

[30]  G Svahn,et al.  Generation of x rays for medical imaging by high-power lasers: preliminary results. , 1993, Radiology.

[31]  Utsumi,et al.  Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Nickles,et al.  Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Paul Gibbon,et al.  Short-pulse laser - plasma interactions , 1996 .

[34]  Michel Piché,et al.  Hot-electron energy deposition in CO2-laser-irradiated targets consistent with magnetic-field-induced surface transport , 1983 .

[35]  Andrzej Krol,et al.  Experimental and theoretical optimization of laser-produced x-ray spectra for vascular imaging , 2000, Medical Imaging.

[36]  W. J. Gallagher,et al.  Laser‐generated plasmas as a source of x rays for medical applications , 1974 .

[37]  Paul A. Jaanimagi,et al.  Characterization of a subpicosecond x-ray streak camera for ultrashort laser-produced plasmas experiments , 2000 .

[38]  A. Krol,et al.  High magnification imaging with a laser-based hard X-ray source , 1999 .

[39]  Y Beaudoin,et al.  Ultrahigh-contrast Ti:sapphire/Nd:glass terawatt laser system. , 1992, Optics letters.

[40]  N. H. Burnett,et al.  Hot-electron generation and transport in high-intensity laser interaction , 1986 .

[41]  Vladislav V. Yakovlev,et al.  Time-gated medical imaging with ultrafast laser-plasma x rays , 1995, Optics & Photonics.

[42]  A Fenster,et al.  Theoretical optimization of a split septaless xenon ionization detector for dual-energy chest radiography. , 1988, Medical physics.

[43]  Harris,et al.  MeV x-ray generation with a femtosecond laser. , 1992, Physical review letters.

[44]  D. Meyerhofer,et al.  Strong Kα Emission in Picosecond Laser-Plasma Interactions , 1993, Shortwavelength V: Physics with Intense Laser Pulses.

[45]  N. Nariyama,et al.  Comparison of in-phantom dose distributions for coronary angiography using an x-ray machine and synchrotron radiation. , 2001, Medical physics.

[46]  H. Pépin,et al.  Spatial characteristics of continuum x-ray emission from lateral energy transport in CO/sub 2/-laser-produced plasmas , 1981 .

[47]  Gauthier,et al.  Efficient K alpha x-ray source from femtosecond laser-produced plasmas. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  Henri Pepin,et al.  Angular distribution of hot electrons incident on a laser-irradiated target , 1984 .

[49]  N. Dyson,et al.  X-rays in atomic and nuclear physics , 1990 .

[50]  J. Kephart,et al.  Bremsstrahlung emission from laser ‐ produced plasmas , 1974 .

[51]  A. Liuzzi,et al.  Experimental thick-target bremsstrahlung spectra from electrons in the range 10 to 30 keV , 1975 .

[52]  N. H. Burnett,et al.  Superthermal x‐ray emission from CO2‐laser‐produced plasmas , 1979 .

[53]  C. E. Dick,et al.  Large‐angle L x‐ray production by electrons , 1973 .

[54]  P Audebert,et al.  Comparison of measured and calculated X-ray and hot-electron production in short-pulse laser-solid interactions at moderate intensities. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[56]  A. E. Dangor,et al.  Plasma Formation on the Front and Rear of Plastic Targets due to High-Intensity Laser-Generated Fast Electrons , 1998 .

[57]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[58]  Gerard Mourou,et al.  Generation of ultrahigh peak power pulses by chirped pulse amplification , 1988 .