Plasmonic Waveguide Filters Based on Tunneling and Cavity Effects

This work presents a bandstop plasmonic filter that comprises a metal–insulator–metal (MIM) waveguide and a few pairs of strip cavities that are embedded in the metal. The strip cavity acts as both a near-field antenna and an MIM resonator. The central frequency and the bandwidth of the forbidden band are inversely related to the cavity length and the cavity-to-waveguide distance, respectively. These results correlate with the predictions of the ring resonator model but only under the resonant condition that double the effective length of cavity is an integer multiple of the guiding wavelength in the cavity.

[1]  Y. Lan Optical tunneling effect of localized surface plasmon: A simulation study using particle-in-cell method , 2006 .

[2]  Chih-Ming Wang,et al.  Impedance-Matching Surface Plasmon Absorber for FDTD Simulations , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[3]  Din Ping Tsai,et al.  Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance , 2002 .

[4]  Yehia Massoud,et al.  A low-loss metal-insulator-metal plasmonic bragg reflector. , 2006, Optics express.

[5]  Alexei A. Maradudin,et al.  Excitation of surface polaritons by end-fire coupling. , 1983, Optics letters.

[6]  Georgios Veronis,et al.  Slow-light enhanced absorption switches in metal-dielectric-metal plasmonic waveguides , 2009, CLEO: 2011 - Laser Science to Photonic Applications.

[7]  A. Yariv Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2000 .

[8]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[9]  Sailing He,et al.  Surface Plasmon Bragg Gratings Formed in Metal-Insulator-Metal Waveguides , 2007, IEEE Photonics Technology Letters.

[10]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[11]  Yehia Massoud,et al.  Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors. , 2008, Optics express.

[12]  Y. Lan,et al.  Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation. , 2009, Optics letters.

[13]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[14]  Yehia Massoud,et al.  Nanoscale surface plasmon based resonator using rectangular geometry , 2007 .

[15]  Bing Wang,et al.  Plasmon Bragg reflectors and nanocavities on flat metallic surfaces , 2005 .

[16]  D. Pozar Microwave Engineering , 1990 .

[17]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[18]  Shuangchun Wen,et al.  A wide bandgap plasmonic Bragg reflector. , 2008, Optics express.

[19]  A. Boltasseva,et al.  Compact Bragg gratings for long-range surface plasmon polaritons , 2006, Journal of Lightwave Technology.

[20]  J. Roy Sambles,et al.  Resonant tunneling of light through thin metal films via strongly localized surface plasmons , 2000 .

[21]  E. Economou Surface Plasmons in Thin Films , 1969 .

[22]  Byoungho Lee,et al.  High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. , 2008, Optics express.

[23]  Xian-Shi Lin,et al.  Tooth-shaped plasmonic waveguide filters with nanometeric sizes. , 2008, Optics letters.

[24]  Xu Guang Huang,et al.  A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. , 2009, Optics express.