Equal opportunity networks, distance-balanced graphs, and Wiener game

Abstract Given a graph G and a set X ⊆ V ( G ) , the relative Wiener index of X in G is defined as W X ( G ) = ∑ { u , v } ∈ X 2 d G ( u , v ) . The graphs G (of even order) in which for every partition V ( G ) = V 1 + V 2 of the vertex set V ( G ) such that | V 1 | = | V 2 | we have W V 1 ( G ) = W V 2 ( G ) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs G in which all vertices u ∈ V ( G ) have the same total distance D G ( u ) = ∑ v ∈ V ( G ) d G ( u , v ) . Some related problems are posed along the way, and the so-called Wiener game is introduced.

[1]  Peter Dankelmann,et al.  Average distance and vertex-connectivity , 2009, J. Graph Theory.

[2]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[3]  Fernando Chamizo,et al.  On Rowland's Sequence , 2011, Electron. J. Comb..

[4]  Sandi Klavzar,et al.  Generalized Fibonacci cubes , 2012, Discret. Math..

[5]  Kannan Balakrishnan,et al.  Strongly distance-balanced graphs and graph products , 2009, Eur. J. Comb..

[6]  Primoz Sparl,et al.  On the connectivity of bipartite distance-balanced graphs , 2012, Eur. J. Comb..

[7]  Harishchandra S. Ramane,et al.  Terminal Wiener Index of Line Graphs , 2013 .

[8]  Sandi Klavzar,et al.  Structure of Fibonacci cubes: a survey , 2013, J. Comb. Optim..

[9]  Boris Furtula,et al.  Terminal Wiener index , 2009 .

[10]  I. Gutman,et al.  Wiener Index of Hexagonal Systems , 2002 .

[11]  Mostafa Tavakoli,et al.  Further Results on Distance-balanced graphs , 2013 .

[12]  Wei Zhong,et al.  A Note on the Distance-Balanced Property of Generalized Petersen Graphs , 2009, Electron. J. Comb..

[13]  Dragan Marusic,et al.  Distance-balanced graphs: Symmetry conditions , 2006, Discret. Math..

[14]  Mustapha Aouchiche,et al.  On a conjecture about the Szeged index , 2010, Eur. J. Comb..

[15]  Boris Horvat,et al.  Terminal polynomials and star-like graphs , 2008 .

[16]  Jure Zupan,et al.  On representation of proteins by star-like graphs. , 2007, Journal of molecular graphics & modelling.

[17]  Victor Reiner,et al.  Betti Numbers of Monomial Ideals and Shifted Skew Shapes , 2007, Electron. J. Comb..

[18]  Mostafa Tavakoli,et al.  Remarks on Distance-Balanced Graphs , 2011 .

[19]  Aviezri S. Fraenkel,et al.  Combinatorial Games: selected Bibliography with a Succinct Gourmet Introduction , 2012 .

[20]  Sergio Cabello,et al.  The Complexity of Obtaining a Distance-Balanced Graph , 2011, Electron. J. Comb..

[21]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[22]  Keiichi Handa Bipartitie Graphs with Balanced (a, b)-Partitions , 1999, Ars Comb..

[23]  Sandi Klavzar,et al.  On distance-balanced graphs , 2010, Eur. J. Comb..

[24]  K Handa バランス(a,b)分割による2部グラフ | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .