Determination of the n-alkane profile of epicuticular wax extracted from mature leaves of Cestrum nocturnum (Solanaceae: Solanales)

An n-hexane extract of fresh, mature leaves of Cestrum nocturnum (Solanales: Solanaceae) containing thin layer epicuticular waxes was analysed by thin-layer chromatography, infrared and gas liquid chromatography using standard hydrocarbons. Seventeen long chain alkanes (n-C18 to n-C34) were identified and quantified. Hentriacontane (n-C31) was established as the major n-alkane, while nonadecane (n-C19) was the least abundant component of the extracted wax fraction. The carbon preference index calculated for the sample was 1.30, showing an odd to even carbon number predominance.

[1]  A. Ghosh,et al.  Isolation, chemical characterization and seasonal variation of some primary and secondary biochemicals of Cestrum nocturnum (Solanaceae). , 2009 .

[2]  H. Pérez-Saad,et al.  Behavioral and antiepileptic effects of acute administration of the extract of the plant Cestrum nocturnum Lin (lady of the night) , 2008, Epilepsy & Behavior.

[3]  R. Jetter,et al.  Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. , 2007, Annals of botany.

[4]  R. Jetter,et al.  Composition of Plant Cuticular Waxes , 2007 .

[5]  C. Müller Plant–Insect Interactions on Cuticular Surfaces , 2007 .

[6]  S. Gurr,et al.  Filamentous Fungi on Plant Surfaces , 2007 .

[7]  G. Chandra,et al.  Bactericidal Activities of Some Common Herbs in India , 2007 .

[8]  K. Winter,et al.  Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama , 2006 .

[9]  A. Barik,et al.  The determination of n-alkanes in the cuticular wax of leaves of Ludwigia adscendens L. , 2004, Phytochemical analysis : PCA.

[10]  S. Dorn,et al.  Plant-Derived Semiochemicals as Contact Host Location Stimuli for a Parasitoid of Leafminers , 2000, Journal of Chemical Ecology.

[11]  P. Jarvis,et al.  Epicuticular wax in the stomatal antechamber of sitka spruce and its effects on the diffusion of water vapour and carbon dioxide , 1971, Planta.

[12]  J. Mello,et al.  Calcinosis--calcinogenic plants. , 2003, Toxicon : official journal of the International Society on Toxinology.

[13]  V. Isidorov,et al.  GC-MS Analysis of Compounds Extracted from Buds of Populus balsamifera and Populus nigra , 2003, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[14]  R. Jetter,et al.  Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. , 2001, Plant physiology.

[15]  H. Sakagami,et al.  Flavonol glycosides and steroidal saponins from the leaves of Cestrum nocturnum and their cytotoxicity. , 2001, Journal of natural products.

[16]  E. Piasentier,et al.  The n-alkane concentrations in buds and leaves of browsed broadleaf trees , 2000, The Journal of Agricultural Science.

[17]  R. Jetter,et al.  Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. , 2000 .

[18]  L. M. Schoonhoven,et al.  Plant Chemistry: Endless Variety , 1998 .

[19]  J. Loon,et al.  Insect-plant biology: from physiology to evolution. , 1998 .

[20]  R. Stösser,et al.  Saisonale, ontogenetische und sortentypische Veränderungen des Oberflächenwachses von Apfelblättern , 1992 .

[21]  R. Mello-Silva,et al.  Alkanes of foliar epicuticular waxes of velloziaceae , 1989 .

[22]  Ce Jeffree,et al.  The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution , 1986 .

[23]  D A Reicosky,et al.  Physiological Effects of Surface Waxes: I. Light Reflectance for Glaucous and Nonglaucous Picea pungens. , 1978, Plant physiology.