People Detection in Color and Infrared Video Using HOG and Linear SVM

This paper introduces a solution for detecting humans in smart spaces through computer vision. The approach is valid both for images in visible and infrared spectra. Histogram of oriented gradients (HOG) is used for feature extraction in the human detection process, whilst linear support vector machines (SVM) are used for human classification. A set of tests is conducted to find the classifiers which optimize recall in the detection of persons in visible video sequences. Then, the same classifiers are used to detect people in infrared video sequences obtaining excellent results.

[1]  Antonio Fernández Caballero,et al.  Real-time motion detection by lateral inhibition in accumulative computation. , 2010 .

[2]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[3]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[5]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[6]  Juan Moreno García,et al.  Video sequence motion tracking by fuzzification techniques , 2010, Appl. Soft Comput..

[7]  Chih-Jen Lin,et al.  A sequential dual method for large scale multi-class linear svms , 2008, KDD.

[8]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[9]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[10]  Antonio Fernández-Caballero,et al.  Real-time human segmentation in infrared videos , 2011, Expert Syst. Appl..

[11]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[12]  Antonio Fernández-Caballero,et al.  Real-Time Accumulative Computation Motion Detectors , 2009, Sensors.

[13]  Jianfei Dong,et al.  Nighttime Pedestrian Detection with Near Infrared using Cascaded Classifiers , 2007, 2007 IEEE International Conference on Image Processing.

[14]  A. Broggi,et al.  Pedestrian Detection using Infrared images and Histograms of Oriented Gradients , 2006, 2006 IEEE Intelligent Vehicles Symposium.

[15]  Alberto Broggi,et al.  Pedestrian detection in infrared images , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[16]  David Vázquez,et al.  Learning appearance in virtual scenarios for pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[18]  Antonio Fernández-Caballero,et al.  A survey of video datasets for human action and activity recognition , 2013, Comput. Vis. Image Underst..

[19]  Ramakant Nevatia,et al.  Pedestrian Detection in Infrared Images based on Local Shape Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Cordelia Schmid,et al.  Learning to Parse Pictures of People , 2002, ECCV.

[21]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Antonio Fernández-Caballero,et al.  Visual surveillance by dynamic visual attention method , 2006, Pattern Recognit..

[23]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[24]  Hasan Farsi,et al.  A Robust Method Applied to Human Detection , 2010 .

[25]  Antonio Fernández-Caballero,et al.  Optical flow or image subtraction in human detection from infrared camera on mobile robot , 2010, Robotics Auton. Syst..

[26]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[27]  Antonio Fernández-Caballero,et al.  Segmentation from motion of non-rigid objects by neuronal lateral interaction , 2001, Pattern Recognit. Lett..