New Designs in Lightweight Symmetric Encryption

In this article, we consider new trends in the design of ultra-lightweight symmetric encryption algorithms. New lightweight designs for both block and stream ciphers as well as the underlying hardware design rationale are discussed. It is shown that secure block ciphers can be built with about 1,500 gate equivalences and, interestingly, it seems that modern lightweight block ciphers can have similar hardware requirements to lightweight stream ciphers.

[1]  S. Babbage Improved “exhaustive search” attacks on stream ciphers , 1995 .

[2]  Roger M. Needham,et al.  TEA, a Tiny Encryption Algorithm , 1994, FSE.

[3]  Vincent Rijmen,et al.  The Design of Rijndael , 2002, Information Security and Cryptography.

[4]  Gregor Leander,et al.  On the Classification of 4 Bit S-Boxes , 2007, WAIFI.

[5]  Andrey Bogdanov,et al.  PRESENT: An Ultra-Lightweight Block Cipher , 2007, CHES.

[6]  T. Dierks,et al.  The TLS protocol , 1999 .

[7]  Christof Paar,et al.  New Light-Weight Crypto Algorithms for RFID , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[8]  Eli Biham,et al.  Differential Cryptanalysis of the Full 16-Round DES , 1992, CRYPTO.

[9]  Martin Hell,et al.  On the Design and Analysis of Stream Ciphers , 2007 .

[10]  Jongsung Kim,et al.  HIGHT: A New Block Cipher Suitable for Low-Resource Device , 2006, CHES.

[11]  Ingrid Verbauwhede,et al.  Energy, performance, area versus security trade-offs for stream ciphers , 2004 .

[12]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[13]  Alex Biryukov,et al.  Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers , 2000, ASIACRYPT.

[14]  Thomas Johansson,et al.  A New Version of the Stream Cipher SNOW , 2002, Selected Areas in Cryptography.

[15]  Martin. Feldhofer Comparison of Low-Power Implementations of Trivium and Grain , 2007 .

[16]  Simon Heron,et al.  Encryption: Advanced Encryption Standard (AES) , 2009 .

[17]  Martin Hell,et al.  A Stream Cipher Proposal: Grain-128 , 2006, 2006 IEEE International Symposium on Information Theory.

[18]  Alexander Maximov,et al.  Cryptanalysis of Grain , 2006, FSE.

[19]  Alex Biryukov,et al.  Real Time Cryptanalysis of A5/1 on a PC , 2000, FSE.

[20]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[21]  Matthew J. B. Robshaw,et al.  Searching for Compact Algorithms: cgen , 2006, VIETCRYPT.

[22]  Vincent Rijmen,et al.  AES implementation on a grain of sand , 2005 .

[23]  Jean-Jacques Quisquater,et al.  SEA: A Scalable Encryption Algorithm for Small Embedded Applications , 2006, CARDIS.

[24]  Eli Biham,et al.  New types of cryptanalytic attacks using related keys , 1994, Journal of Cryptology.

[25]  Chae Hoon Lim,et al.  mCrypton - A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors , 2005, WISA.

[26]  Johann Großschädl,et al.  Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box , 2006, SAMOS.

[27]  J. Vandewalle,et al.  Security and Performance Optimization of a new DES data encryption chip , 1987, ESSCIRC '87: 13th European Solid-State Circuits Conference.

[28]  Sandra Dominikus,et al.  Strong Authentication for RFID Systems Using the AES Algorithm , 2004, CHES.

[29]  Martin Hell,et al.  A Note on Distinguishing Attacks , 2007, 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks.

[30]  Martin Hell,et al.  Grain: a stream cipher for constrained environments , 2007, Int. J. Wirel. Mob. Comput..

[31]  Alex Biryukov,et al.  Improved Time-Memory Trade-Offs with Multiple Data , 2005, Selected Areas in Cryptography.

[32]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[33]  Christof Paar,et al.  Breaking Ciphers with COPACOBANA - A Cost-Optimized Parallel Code Breaker , 2006, CHES.

[34]  Johann Großschädl,et al.  Area, Delay, and Power Characteristics of Standard-Cell Implementations of the AES S-Box , 2006, J. Signal Process. Syst..