Optimization of the Interval Type-2 Fuzzy C-Means using Particle Swarm Optimization

This paper presents the implementation of Particle Swarm Optimization for the optimization of Interval Type-2 Fuzzy C-Means algorithm, this in order to automatically find the optimal number of clusters c and the interval of fuzzification or weight exponent [m1, m2], using as objective function for optimization algorithm an index cluster validation.

[1]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[2]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection for Authorship Verification , 2009, CIARP.

[3]  Miin-Shen Yang,et al.  A cluster validity index for fuzzy clustering , 2005, Pattern Recognit. Lett..

[4]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[5]  Haiyoung Lee A Cluster validity Index for Fuzzy Clustering , 1999 .

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Patricia Melin,et al.  A new validation index for fuzzy clustering and its comparisons with other methods , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[8]  Ajith Abraham,et al.  Advances in Nature and Biologically Inspired Computing: Proceedings of the 7th World Congress on Nature and Biologically Inspired Computing , 2015 .

[9]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[10]  Ujjwal Maulik,et al.  A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification , 2005, Fuzzy Sets Syst..

[11]  Christian Döring,et al.  Fundamentals of Fuzzy Clustering , 2007 .

[12]  W. Pedrycz,et al.  Fuzzy computing for data mining , 1999, Proc. IEEE.

[13]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[14]  Frank Chung-Hoon Rhee,et al.  Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to $C$-Means , 2007, IEEE Transactions on Fuzzy Systems.

[15]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  W E Phillips,et al.  Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme. , 1995, Magnetic Resonance Imaging.

[18]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[19]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection , 2009, J. Mach. Learn. Res..

[20]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[21]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[22]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[23]  Jay A. Farrell,et al.  A C-means clustering based fuzzy modeling method , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[24]  Miin Shen Yang,et al.  Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. , 2002, Magnetic resonance imaging.

[25]  Abraham Kandel,et al.  Feature-based fuzzy classification for interpretation of mammograms , 2000, Fuzzy Sets Syst..

[26]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[27]  Byung-In Choi,et al.  Interval type-2 fuzzy membership function generation methods for pattern recognition , 2009, Inf. Sci..

[28]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[29]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.