Non-elementary Speed-ups in Proof Length by Different Variants of Classical Analytic Calculi

In this paper, different variants of classical analytic calculi for first-order logic are compared with respect to the length of proofs possible in such calculi. A cut-free sequent calculus is used as a prototype for different other analytic calculi like analytic tableau or various connection calculi. With modified branching rules (β-rules), non-elementary shorter minimal proofs can be obtained for a class of formulae. Moreover, by a simple translation technique and a standard sequent calculus, analytic cuts, i.e., cuts where the cut formulae occur as subformulae in the input formula, can be polynomially simulated.

[1]  Peter H. Schmitt,et al.  Automated Deduction with Shannon Graphs , 1995, J. Log. Comput..

[2]  Wolfgang Bibel,et al.  Methods and calculi for deduction , 1993 .

[3]  Stephen Cook,et al.  Corrections for "On the lengths of proofs in the propositional calculus preliminary version" , 1974, SIGA.

[4]  J. Davenport Editor , 1960 .

[5]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[6]  Christian G. Fermüller,et al.  Non-elementary Speedups between Different Versions of Tableaux , 1995, TABLEAUX.

[7]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[8]  Dag Prawitz,et al.  A proof procedure with matrix reduction , 1970 .

[9]  Uwe Egly An Answer to an Open Problem of Urquhart , 1998, Theor. Comput. Sci..

[10]  Uwe Egly On Different Structure-Preserving Translations to Normal Form , 1996, J. Symb. Comput..

[11]  Alexander Leitsch,et al.  On Skolemization and Proof Complexity , 1994, Fundam. Informaticae.

[12]  Christian G. Fermüller,et al.  Lean Induction Principles for Tableaux , 1997, TABLEAUX.

[13]  Marcello D'Agostino,et al.  Are tableaux an improvement on truth-tables? , 1992, J. Log. Lang. Inf..

[14]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[15]  Elmar Eder,et al.  Relative complexities of first order calculi , 1992, Artificial intelligence = Künstliche Intelligenz.

[16]  George Boolos,et al.  Don't eliminate cut , 1984, J. Philos. Log..

[17]  V. Orevkov Lower bounds for increasing complexity of derivations after cut elimination , 1982 .

[18]  Evert W. Beth,et al.  Semantic Entailment And Formal Derivability , 1955 .

[19]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[20]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[21]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[22]  George Boolos,et al.  A curious inference , 1987, J. Philos. Log..

[23]  Wolfgang Bibel,et al.  Deduction - automated logic , 1993 .