A Genetic Algorithm-Based, Hybrid Machine Learning Approach to Model Selection

We describe a general and robust method for identification of an optimal non-linear mixed effects model. This includes structural, inter-individual random effects, covariate effects and residual error models using machine learning. This method is based on combinatorial optimization using genetic algorithm.

[1]  D. Bates,et al.  Model Building for Nonlinear Mixed Effects Models , 2007 .

[2]  B S Gerber,et al.  Selection of Predictor Variables for Pneumonia Using Neural Networks and Genetic Algorithms , 2005, Methods of Information in Medicine.

[3]  Lance D. Chambers Practical handbook of genetic algorithms , 1995 .

[4]  D. Stanski,et al.  A three-step approach combining bayesian regression and NONMEM population analysis: Application to midazolam , 1991, Journal of Pharmacokinetics and Biopharmaceutics.

[5]  Lewis B. Sheiner,et al.  Building population pharmacokineticpharmacodynamic models. I. Models for covariate effects , 1992, Journal of Pharmacokinetics and Biopharmaceutics.

[6]  M. Hutmacher,et al.  Efficient Screening of Covariates in Population Models Using Wald's Approximation to the Likelihood Ratio Test , 2001, Journal of Pharmacokinetics and Pharmacodynamics.

[7]  France Mentré,et al.  Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models , 2006, Journal of Pharmacokinetics and Pharmacodynamics.

[8]  Akito Taneda,et al.  Cofolga: a genetic algorithm for finding the common folding of two RNAs , 2005, Comput. Biol. Chem..

[9]  J. Shapcott Index Tracking : Genetic Algorithms for Investment Portfolio Selection , 2002 .

[10]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[11]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Gregory S. Hornby,et al.  An Evolved Antenna for Deployment on NASA's Space Technology 5 Mission , 2004 .

[14]  E N Jonsson,et al.  Xpose--an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. , 1999, Computer methods and programs in biomedicine.

[15]  L. Sheiner,et al.  Evaluating Pharmacokinetic/Pharmacodynamic Models Using the Posterior Predictive Check , 2001, Journal of Pharmacokinetics and Pharmacodynamics.

[16]  Stuart L. Beal,et al.  Interaction between structural, statistical, and covariate models in population pharmacokinetic analysis , 1994, Journal of Pharmacokinetics and Biopharmaceutics.

[17]  Wen-Lian Hsu,et al.  GANA—a genetic algorithm for NMR backbone resonance assignment , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[18]  M. Karlsson,et al.  Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis , 2002, AAPS PharmSci.

[19]  Lance D. Chambers,et al.  Practical Handbook of Genetic Algorithms , 1995 .

[20]  Byung Ro Moon,et al.  Hybrid Genetic Algorithms for Feature Selection , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[22]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[23]  Lewis B. Sheiner,et al.  Some suggestions for measuring predictive performance , 1981, Journal of Pharmacokinetics and Biopharmaceutics.

[24]  Thomas K. L. Tong,et al.  Genetic algorithm optimization in building portfolio management , 2001 .