A positive flux limited difference scheme for the uncertain correlation 2D Black-Scholes problem

We consider a two-asset non-linear model of option pricing in an environment where the correlation is not known precisely, as it varies between two known values. First we discuss the non-negativity of the solution of the problem. Next, we construct and analyze a positivity preserving, flux-limited finite difference scheme for the corresponding boundary value problem. Numerical experiments are analyzed.

[1]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[2]  Igor Mozolevski,et al.  Monotone difference schemes for equations with mixed derivatives , 2002 .

[3]  Peter A. Forsyth,et al.  Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .

[4]  Petr N. Vabishchevich,et al.  Flux-splitting schemes for parabolic equations with mixed derivatives , 2013 .

[5]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[6]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[7]  Peter A. Forsyth,et al.  Hedging with a correlated asset: Solution of a nonlinear pricing PDE , 2007 .

[8]  Juergen Topper,et al.  Finite Element Modelling of Exotic Options , 1998 .

[9]  I. V. Rybak Monotone and conservative difference schemes for elliptic equations with mixed derivatives 1 , 2005 .

[10]  A. Samarskii The Theory of Difference Schemes , 2001 .

[11]  Peter A. Forsyth,et al.  Robust numerical methods for PDE models of Asian options , 1997 .

[12]  M.-C. Casabán,et al.  Removing the Correlation Term in Option Pricing Heston Model: Numerical Analysis and Computing , 2013 .

[13]  Z. Horváth,et al.  Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .

[14]  Kai Zhang,et al.  A computational scheme for uncertain volatility model in option pricing , 2009 .

[15]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .

[16]  Piotr P. Matus,et al.  On Convergence of Difference Schemes for IBVP for Quasilinear Parabolic Equations with Generalized Solutions , 2014, Comput. Methods Appl. Math..

[17]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[18]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[19]  Matthias Ehrhardt Nonlinear models in mathematical finance : new research trends in option pricing , 2008 .

[20]  P. Forsyth,et al.  PDE methods for pricing barrier options , 2000 .

[21]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[22]  Jun Ma,et al.  A Stochastic Correlation Model with Mean Reversion for Pricing Multi-Asset Options , 2009 .

[23]  Matthias Ehrhardt,et al.  A versatile approach for stochastic correlation using hyperbolic functions , 2016, Int. J. Comput. Math..

[24]  E. Haug The complete guide to option pricing formulas , 1997 .

[25]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[26]  Miglena N. Koleva,et al.  Positivity Preserving Numerical Method for Non-linear Black-Scholes Models , 2012, NAA.

[27]  R. LeVeque Numerical methods for conservation laws , 1990 .

[28]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[29]  Rüdiger Weiner,et al.  A Positive Splitting Method for Mixed Hyperbolic-Parabolic Systems , 2001 .

[30]  Peter Nash Pricing Financial Instruments , 2017 .

[31]  Jürgen Topper,et al.  Financial Engineering with Finite Elements , 2005 .