Computation of spectral sets for uncertain linear fractional-order systems

Abstract The present paper proposes an algorithm to compute the spectral set of a family of fractional-order pseudo-polynomials. The algorithm makes use of interval constraint propagation technique to find out all the structural roots of the given uncertain fractional-order systems in the given search domain. It is first shown that the problem of finding the spectral set can be formulated as an interval constraint satisfaction problem and then solved using branch and prune algorithm. The algorithm guarantees that all the points of the spectral set are computed to prescribed accuracy. The proposed algorithm is demonstrated on a plant with nonlinear parametric dependencies and also on a practical application of a gas turbine plant.

[1]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[2]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[3]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[4]  M. S. Keshner,et al.  l/f Noise , 1982 .

[5]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[6]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[7]  Yangquan Chen,et al.  Robust controllability of interval fractional order linear time invariant systems , 2006, Signal Process..

[8]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[9]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[10]  YangQuan Chen,et al.  Stability of linear time invariant systems with interval fractional orders and interval coefficients , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[11]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[12]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[13]  Eero Hyvönen,et al.  Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach , 1992, Artif. Intell..

[14]  R. Cole,et al.  Dielectric Relaxation in Glycerine , 1950 .

[15]  A. Tustin,et al.  The design of systems for automatic control of the position of massive objects , 1958 .

[16]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[17]  Nusret Tan,et al.  Robust stability analysis of fractional order interval polynomials. , 2009, ISA transactions.

[18]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[19]  J. C. Wang Realizations of Generalized Warburg Impedance with RC Ladder Networks and Transmission Lines , 1987 .

[20]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[21]  K. Moore,et al.  Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[22]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[23]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[24]  I. Podlubny Fractional differential equations , 1998 .

[25]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[26]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .

[27]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.