Standard surfaces and nodal curves in symplectic 4-manifolds

Continuing the program of [DS] and [U1], we introduce refinements of the Donaldson-Smith standard surface count which are designed to count nodal pseudoholomorphic curves and curves with a prescribed decomposition into reducible components. In cases where a corresponding analogue of the Gromov-Taubes invariant is easy to define, our invariants agree with those analogues. We also prove a vanishing result for some of the invariants that count nodal curves.

[1]  Michael Usher The Gromov invariant and the Donaldson-Smith standard surface count , 2003, math/0310450.

[2]  Michael Usher Relative Hilbert scheme methods in pseudoholomorphic geometry , 2004 .

[3]  A. Liu The Family Blowup Formula of the Family Seiberg-Witten Invariants , 2003, math/0305294.

[4]  Jacqueline Grennon , 2nd Ed. , 2002, The Journal of nervous and mental disease.

[5]  Tian-Jun Li,et al.  Family Seiberg-Witten invariants and wall crossing formulas , 2001, math/0107211.

[6]  I. Smith Serre–Taubes duality for pseudoholomorphic curves , 2001, math/0106220.

[7]  C. Taubes The Seiberg–Witten invariants and 4–manifolds with essential tori , 2001, math/0105209.

[8]  R. Stern,et al.  The canonical class of a symplectic four manifold , 2001 .

[9]  S. Donaldson,et al.  Lefschetz pencils and the canonical class for symplectic four-manifolds , 2000, math/0012067.

[10]  I. Smith Lefschetz pencils and divisors in moduli space , 2000, math/0011221.

[11]  A. Liu Family Blowup Formula, Admissible Graphs and the Enumeration of Singular Curves, I , 2000 .

[12]  Thomas H. Parker,et al.  The symplectic sum formula for Gromov–Witten invariants , 2000, 1510.06943.

[13]  Thomas H. Parker,et al.  Relative Gromov-Witten invariants , 1999, math/9907155.

[14]  V. Shevchishin,et al.  Gromov compactness theorem for stable curves , 1999, math/9903047.

[15]  S. Donaldson Lefschetz pencils on symplectic manifolds , 1999 .

[16]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[17]  D. Salamon Seiberg-Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers , 1999 .

[18]  Alice M. Obenchain-Leeson,et al.  Volume 6 , 1998 .

[19]  J. Sikorav Singularities of $J$-holomorphic curves , 1997 .

[20]  E. Esteves Compactifying the relative Jacobian over families of reduced curves , 1997, alg-geom/9709009.

[21]  Thomas H. Parker,et al.  The Gromov invariants of Ruan-Tian and Taubes , 1997, alg-geom/9702008.

[22]  Y. Ruan Virtual neighborhoods and pseudo-holomorphic curves , 1996, alg-geom/9611021.

[23]  D. Mcduff From symplectic deformation to isotopy , 1996, dg-ga/9606004.

[24]  G. Tian,et al.  Higher genus symplectic invariants and sigma models coupled with gravity , 1996, alg-geom/9601005.

[25]  C. Taubes Counting pseudo-holomorphic submanifolds in dimension 4 , 1996 .

[26]  C. Taubes SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic curves , 1996 .

[27]  Robert E. Gompf A new construction of symplectic manifolds , 1995 .

[28]  D. Salamon,et al.  J-Holomorphic Curves and Quantum Cohomology , 1994 .

[29]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[30]  D. Mcduff The structure of rational and ruled symplectic 4-manifolds , 1990 .

[31]  D. Eisenbud,et al.  Irreducibility of some families of linear series with Brill-Noether number. I , 1989 .