Color uniformity descriptor: An efficient contextual color representation for image indexing and retrieval

Abstract Color is a rich source of visual information for the effective characterization of image content. The recognition of texture or shape elements in images is strongly associated with the analysis of the image color layout. This paper presents a contextual color descriptor designed especially to be applied to CBIR tasks in heterogeneous image databases. The proposed color uniformity descriptor (CUD) clusters perceptually similar image color regions according to the uniformity analysis of their neighbor pixels. CUD produces vast color image details with a thin histogram, whilst preserving the balance between uniqueness and robustness. CUD is computationally efficient and can achieve high precision and throughput rates when used in CBIR. Experimental results show that CUD performs comparably against local features and multiple features state-of-the-art approaches that require more complex data manipulation. Results demonstrate that CUD provides strong image discrimination even in the presence of significant content variation.

[1]  Lei Zhang,et al.  Contents lists available at ScienceDirect Pattern Recognition , 2022 .

[2]  Luc Van Gool,et al.  HPAT Indexing for Fast Object/Scene Recognition Based on Local Appearance , 2003, CIVR.

[3]  Fuhui Long,et al.  Fundamentals of Content-Based Image Retrieval , 2003 .

[4]  Mathias Lux,et al.  Localizing global descriptors for content-based image retrieval , 2015, EURASIP Journal on Advances in Signal Processing.

[5]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[6]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[7]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Thomas Sikora,et al.  The MPEG-7 visual standard for content description-an overview , 2001, IEEE Trans. Circuits Syst. Video Technol..

[9]  Shiliang Zhang,et al.  Semantic-Aware Co-Indexing for Image Retrieval. , 2015, IEEE transactions on pattern analysis and machine intelligence.

[10]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[12]  Lai-Man Po,et al.  A Compact and Efficient Color Descriptor for Image Retrieval , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[13]  Jun Wu,et al.  Perceptual uniform descriptor and ranking on manifold for image retrieval , 2018, Inf. Sci..

[14]  Jing-Ming Guo,et al.  Image indexing using the color and bit pattern feature fusion , 2013, J. Vis. Commun. Image Represent..

[15]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[16]  Jing-Yu Yang,et al.  Content-based image retrieval using color difference histogram , 2013, Pattern Recognit..

[17]  Gaurav Kumar,et al.  A Detailed Review of Feature Extraction in Image Processing Systems , 2014, 2014 Fourth International Conference on Advanced Computing & Communication Technologies.

[18]  Paul Townend,et al.  Improving content-based image retrieval for heterogeneous datasets using histogram-based descriptors , 2017, Multimedia Tools and Applications.

[19]  Qi Tian,et al.  Coupled Binary Embedding for Large-Scale Image Retrieval , 2014, IEEE Transactions on Image Processing.

[20]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[21]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[22]  Georgios S. Paschos,et al.  Perceptually uniform color spaces for color texture analysis: an empirical evaluation , 2001, IEEE Trans. Image Process..

[23]  Jing-Yu Yang,et al.  Content-based image retrieval using computational visual attention model , 2015, Pattern Recognit..

[24]  T. Gevers,et al.  UvA-DARE ( Digital Academic Repository ) Robust Histogram Construction from Color Invariants for Object Recognition , 2003 .

[25]  Yiannis S. Boutalis,et al.  Mean Normalized Retrieval Order (MNRO): a new content-based image retrieval performance measure , 2014, Multimedia Tools and Applications.