A Resistance Bound Via An Isoperimetric Inequality
暂无分享,去创建一个
[1] Nicholas T. Varopoulos,et al. Analysis and Geometry on Groups , 1993 .
[2] David J. Aldous,et al. Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .
[3] Peter G. Doyle,et al. Random Walks and Electric Networks: REFERENCES , 1987 .
[4] Y. Peres. Probability on Trees: An Introductory Climb , 1999 .
[5] Laurent Saloff-Coste,et al. Isopérimétrie pour les groupes et les variétés , 1993 .
[6] Elchanan Mossel,et al. On the mixing time of a simple random walk on the super critical percolation cluster , 2000 .
[7] S. Janson. Gaussian Hilbert Spaces , 1997 .
[8] Laurent Saloff-Coste,et al. Isoperimetric Inequalities and Decay of Iterated Kernels for Almost-transitive Markov Chains , 1995, Combinatorics, Probability and Computing.
[9] Harry Kesten,et al. On the time constant and path length of first-passage percolation , 1980, Advances in Applied Probability.
[10] É. Remy,et al. Isoperimetry and heat kernel decay on percolation clusters , 2003, math/0301213.