Several Extreme Coefficients of the Tutte Polynomial of Graphs

Let $$t_{i,j}$$ t i , j be the coefficient of $$x^iy^j$$ x i y j in the Tutte polynomial T ( G ;  x ,  y ) of a connected bridgeless and loopless graph G with order v and size e . It is trivial that $$t_{0,e-v+1}=1$$ t 0 , e - v + 1 = 1 and $$t_{v-1,0}=1$$ t v - 1 , 0 = 1 . In this paper, we obtain expressions for another six extreme coefficients $$t_{i,j}$$ t i , j ’s with $$(i,j)=(0,e-v)$$ ( i , j ) = ( 0 , e - v ) , $$(0,e-v-1)$$ ( 0 , e - v - 1 ) , $$(v-2,0)$$ ( v - 2 , 0 ) , $$(v-3,0)$$ ( v - 3 , 0 ) , $$(1,e-v)$$ ( 1 , e - v ) and $$(v-2,1)$$ ( v - 2 , 1 ) in terms of small substructures of G . We also discuss their duality properties and their specializations to extreme coefficients of the Jones polynomial.

[1]  Feng Ming Dong,et al.  Zeros of Jones Polynomials of Graphs , 2015, Electron. J. Comb..

[2]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[3]  R. Read An introduction to chromatic polynomials , 1968 .

[4]  G. Meredith,et al.  Coefficients of chromatic polynomials , 1972 .

[5]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[6]  A volumish theorem for the Jones polynomial of alternating knots , 2004, math/0403448.

[7]  E. Bender,et al.  On the Applications of Möbius Inversion in Combinatorial Analysis , 1975 .

[8]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[9]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[10]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[11]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[12]  R. Avdeev ON EXTREME COEFFICIENTS OF THE JONES–KAUFFMAN POLYNOMIAL FOR VIRTUAL LINKS , 2006 .

[13]  Louis H. Kauffman,et al.  A Tutte polynomial for signed graphs , 1989, Discret. Appl. Math..

[14]  Victor Reiner,et al.  A Convolution Formula for the Tutte Polynomial , 1999, J. Comb. Theory, Ser. B.

[15]  David G. Wagner,et al.  On the Chromatic Roots of Generalized Theta Graphs , 2001, J. Comb. Theory, Ser. B.

[16]  Patrice Ossona de Mendez,et al.  Bipolar orientations Revisited , 1995, Discret. Appl. Math..

[17]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[18]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.