Higher Order Cellular Automata

We introduce a class of dynamical systems called Higher Order Cellular Automata (HOCA). These are based on ordinary CA, but have a hierarchical, or multi-level, structure and/or dynamics. We present a detailed formalism for HOCA and illustrate the concepts through four examples. Throughout the article we emphasize the principles and ideas behind the construction of HOCA, such that these easily can be applied to other types of dynamical systems. The article also presents new concepts and ideas for describing and studying hierarchial dynamics in general.

[1]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[2]  H. Gutowitz A hierarchical classification of cellular automata , 1991 .

[3]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[4]  K. P. Hadeler,et al.  Dimer automata and cellular automata , 1996 .

[5]  Jeffrey E. Steif,et al.  Fixation Results for Threshold Voter Systems , 1993 .

[6]  Alejandro Maass,et al.  Limit Sets of Cellular Automata Associated to Probability Measures , 2000 .

[7]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[8]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[9]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[10]  Andrée C. Ehresmann,et al.  Hyperstructures and memory evolutive systems , 2004, Int. J. Gen. Syst..

[11]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[12]  Frank Schweitzer,et al.  Self-Organization of Complex Structures: From Individual to Collective Dynamics - Some Introductory , 1997 .

[13]  C. J. P'erez,et al.  ON SELF-ORGANIZED CRITICALITY AND SYNCHRONIZATION IN LATTICE MODELS OF COUPLED DYNAMICAL SYSTEMS , 1996, cond-mat/9601102.

[14]  Martin Nilsson,et al.  Ansatz for Dynamical Hierarchies , 2002, Artificial Life.

[15]  L. Kadanoff,et al.  Boolean Dynamics with Random Couplings , 2002, nlin/0204062.

[16]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[17]  Mats G. Nordahl,et al.  Local Information in One-Dimensional Cellular Automata , 2004, ACRI.

[18]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .