Cooperative Game Theoretic Models for Decision-Making in Contexts of Library Cooperation

THIS ARTICLE STARTS, IN SECTION 1, WITH A BRIEF SUMMARY Of Cooperative Economic Game Theory. It covers the following issues: (1) the nature of utility functions, (2) the representation of a decision problem in terms of utility functions, (3) the max-min solution of a decision problem, (4) the extension to multiple participants in the decision, (5) the context of nonzero-sum games, (6) cooperative decision-making, and (7) the role of transferable utilities. There then is a more detailed summary of the specific measures identified by John F. Nash, Lloyd S. Shapley, and John C. Harsanyi. It includes a brief discussion of their significance in general economic and social decision-making in which negotiation and cooperation have important roles. There is then a brief review, in Section 2, of contexts in which negotiation and cooperation among libraries is of special economic importance. They include: (1) sharing of resources, (2) cooperative acquisitions, (3) cooperative automation, (4) shared cataloging, (5) shared storage, and (6) preservation and access. For two of those contexts-cooperative acquisitions and cooperative automation-detailed applications of cooperative game theory are illustrated, including use of specific utility functions to represent the decision problems and show the results of applying the Nash, Shapley, and Harsanyi measures for optimum decision and equitable allocation of resources. Numerical examples are used to make the illustrations as concrete as possible. The article concludes, in Section 3, with a brief description of the implementation of the calculations for the two contexts within the LPM-Library Planning Model.