The cubic-quintic nonlinear Schr\"odinger equation with inverse-square potential

We consider the nonlinear Schrödinger equation in three space dimensions with a focusing cubic nonlinearity and defocusing quintic nonlinearity and in the presence of an external inverse-square potential. We establish scattering in the region of the mass-energy plane where the virial functional is guaranteed to be positive. Our result parallels the scattering result of [10] in the setting of the standard cubic-quintic NLS.

[1]  C. Miao,et al.  Scattering in H1 for the intercritical NLS with an inverse-square potential , 2017, 1702.04064.

[2]  Kai Yang Scattering of the energy-critical NLS with inverse square potential , 2020 .

[3]  P. T. Nam,et al.  Uniqueness of ground state and minimal-mass blow-up solutions for focusing NLS with Hardy potential , 2019, 1907.06964.

[4]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[5]  C. Miao,et al.  Sobolev spaces adapted to the Schrödinger operator with inverse-square potential , 2015, 1503.02716.

[6]  R. Killip,et al.  Cubic-quintic NLS: scattering beyond the virial threshold , 2020, 2007.07406.

[7]  Xiaoyi Zhang On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations , 2006 .

[8]  R. Killip,et al.  Nonlinear Schrodinger Equations at Critical Regularity , 2013 .

[9]  Jason Murphy,et al.  Threshold scattering for the focusing NLS with a repulsive potential , 2021 .

[10]  Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential , 2002, math/0207152.

[11]  C. Miao,et al.  The energy-critical NLS with inverse-square potential , 2015, 1509.05822.

[12]  R. Killip,et al.  The focusing cubic NLS with inverse-square potential in three space dimensions , 2016, Differential and Integral Equations.

[13]  Tadahiro Oh,et al.  Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin , 2017, Archive for Rational Mechanics and Analysis.

[14]  J. Bourgain Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , 1999 .

[15]  C. Miao,et al.  The energy-critical nonlinear wave equation with an inverse-square potential , 2018, 1808.08571.