A probabilistic cooperative-competitive hierarchical model for global optimization

Abstract Stochastic searching methods have been applied widely to areas such as continuous and combinatorial optimization problems in a number of disciplines. Many existing methods solve these problems by navigating on the surface of the possibly rugged landscape. This kind of navigation is not very effective because the property of the landscape at different resolutions can be very different. Time spent at the beginning of the search on the detailed part of the landscape is often useless. Appropriate searching strategies should be adopted at different resolutions. In this paper, we propose a new probabilistic searching model for global optimization. The main contributions of the model are (1) to provide a basis for resolution control and smoothing of search space and (2) to introduce continuous memory into stochastic search. The basis of resolution control is achieved by dividing the search space into a finite number of n-dimensional partitions structurally. The number of partitions governs the resolution of the search space. The more the partitions, the finer is the search space and the more detailed and rugged is the landscape. The benefits are twofold. First, the rugged landscape problem can be smoothed, because the ruggedness is a matter of the number of partitions. Hence, the difficulty in search due to the ruggedness of the landscape can be controlled. Second, it provides a basis to implement algorithms that may change the ‘view’ of the landscape during the search process because we can dynamically divide the search space accordingly. Another important feature that we use is continuous memory. Throughout the search process, searching experience is continuously accumulated in order to shape the global picture of the search space guiding the future searching direction. We present results on the algorithm performance in handling numerical function optimization. The empirical results show that our new model is comparable to, and in many cases performs better than, that of the other advanced methods in terms of solution quality and computation required.

[1]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[2]  Hans-Michael Voigt,et al.  Modal mutations in evolutionary algorithms , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[3]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[4]  M. Kisiel-Dorohinicki,et al.  Agent-based evolutionary multiobjective optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[6]  Egon Balas,et al.  Guided Local Search with Shifting Bottleneck for Job Shop Scheduling , 1998 .

[7]  J. Galletly An Overview of Genetic Algorithms , 1992 .

[8]  Chak-Kuen Wong,et al.  Optimal Placements of Flexible Objects: Part I: Analytical Results for the Unbounded Case , 1997, IEEE Trans. Computers.

[9]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[10]  T. Stützle,et al.  Analyzing the Run-time Behaviour of Iterated Local Search for the TSP , 1999 .

[11]  D. Keymeulen,et al.  Evolutionary design of electronic devices and circuits , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[13]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[14]  Chak-Kuen Wong,et al.  Optimal Placements of Flexible Objects: Part II: A Simulated Annealing Approach for the Bounded Case , 1997, IEEE Trans. Computers.

[15]  Andrew B. Kahng,et al.  A hybrid multilevel/genetic approach for circuit partitioning , 1996, Proceedings of APCCAS'96 - Asia Pacific Conference on Circuits and Systems.

[16]  John R. Koza Hierarchical Automatic Function Definition in Genetic Programming , 1992, FOGA.

[17]  M. B. Tahir,et al.  An overview of Genetic Algorithms , 2003 .

[18]  Kwong-Sak Leung,et al.  Data Mining Using Grammar Based Genetic Programming and Applications , 2000 .

[19]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[20]  Hans-Michael Voigt,et al.  Soft Genetic Operators in Evolutionary Algorithms , 1995, Evolution and Biocomputation.

[21]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[22]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[23]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[24]  Panos M. Pardalos,et al.  Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A Survey , 1997, Comput. Optim. Appl..

[25]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[26]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[27]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[28]  David W. Corne,et al.  Heuristics for Evolutionary Off-line Routing in Telecommunication Networks , 2000, GECCO.

[29]  Rahul Sukthankar,et al.  Adaptive Intelligent Vehicle Modules for Tactical Driving , 1996 .

[30]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[31]  K. S. Anderson,et al.  Genetic crossover strategy using an approximation concept , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[32]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[33]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[34]  Z. Michalewicz,et al.  A parabolic operator for parameter optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[35]  Z. Tang Adaptive partitioned random search to global optimization , 1994, IEEE Trans. Autom. Control..

[36]  Bernhard Sendhoff,et al.  Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies , 2000 .

[37]  Bruce E. Stuckman,et al.  A comparison of Bayesian/sampling global optimization techniques , 1992, IEEE Trans. Syst. Man Cybern..

[38]  J. F. Price,et al.  On descent from local minima , 1971 .

[39]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[40]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[41]  Alexander H. G. Rinnooy Kan,et al.  Stochastic methods for global optimization , 1984 .

[42]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[43]  Wyn L. Price,et al.  A Controlled Random Search Procedure for Global Optimisation , 1977, Comput. J..

[44]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[45]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[46]  X. Yao,et al.  Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[47]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[48]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[49]  AlbrechtA.,et al.  Optimal Placements of Flexible Objects , 1997 .

[50]  Helena Ramalhinho Dias Lourenço,et al.  Combining the Large-Step Optimization with Tabu-Search: Application to The Job-Shop Scheduling Problem , 1996 .

[51]  Wolfgang Banzhaf,et al.  Evolution and Biocomputation , 1995, Lecture Notes in Computer Science.

[52]  Gianni Di Pillo,et al.  A New Version of the Price's Algorithm for Global Optimization , 1997, J. Glob. Optim..

[53]  K. S. Al-Sultan,et al.  A Hybrid Genetic Algorithm for Nonconvex Function Minimization , 1997, J. Glob. Optim..

[54]  X. Yao Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .

[55]  Kwong-Sak Leung,et al.  Probabilistic cooperative-competitive hierarchical modeling as a genetic operator in global optimization , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[56]  Edmund K. Burke,et al.  A multi-stage approach for the thermal generator maintenance scheduling problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[57]  Marco Dorigo,et al.  Metaheuristics for High School Timetabling , 1998, Comput. Optim. Appl..

[58]  Kalyanmoy Deb,et al.  Massive Multimodality, Deception, and Genetic Algorithms , 1992, PPSN.

[59]  Fred W. Glover,et al.  Tabu search for dynamic routing communications network design , 1997, Telecommun. Syst..

[60]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .