An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors

[1]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[2]  Kurt E. Petersen,et al.  Silicon Torsional Scanning Mirror , 1980, IBM J. Res. Dev..

[3]  L. Hornbeck,et al.  128 × 128 deformable mirror device , 1983, IEEE Transactions on Electron Devices.

[4]  Robert W. Cohn Link Analysis Of A Deformable Mirror Device Based Optical Crossbar Switch , 1988, Optics & Photonics.

[5]  拉里·J·霍恩贝克 Spatial light modulator and method , 1989 .

[6]  Larry J. Hornbeck,et al.  Deformable-Mirror Spatial Light Modulators , 1990, Optics & Photonics.

[7]  Uzi Efron Spatial Light Modulators and Applications III , 1990 .

[8]  J.M. Younse,et al.  Mirrors on a chip , 1993, IEEE Spectrum.

[9]  Tseng-Hwang Lin Implementation and characterization of a flexure-beam micromechanical spatial light modulator , 1994 .

[10]  H. Fujita,et al.  Electrostatic micro torsion mirrors for an optical switch matrix , 1996 .

[11]  P. Sarro,et al.  Electrostatic aluminum micromirrors using double-pass metallization , 1997 .

[12]  P. Zavracky,et al.  Micromechanical switches fabricated using nickel surface micromachining , 1997 .

[13]  W. Dötzel,et al.  Experimental adaptation of model parameters for microelectromechanical systems (MEMS) , 1997 .

[14]  W. Dotzel,et al.  Silicon mirrors and micromirror arrays for spatial laser beam modulation , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[15]  Eric Peeters,et al.  Design, modeling and verification of MEMS silicon torsion mirror , 1997, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[16]  M. Fischer,et al.  Electrostatically deflectable polysilicon micromirrors — dynamic behaviour and comparison with the results from FEM modelling with ANSYS , 1998 .

[17]  Yong-Kweon Kim,et al.  Design and fabrication of micromirror array supported by vertical springs , 1998 .

[18]  K. Y. Lau,et al.  Surface-micromachined microoptical elements and systems , 1998, Proc. IEEE.

[19]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[20]  Joseph E. Ford,et al.  Micromechanical fiber-optic attenuator with 3 /spl mu/s response , 1998 .

[21]  O. Degani,et al.  Pull-in study of an electrostatic torsion microactuator , 1998 .

[22]  G. Kino,et al.  Silicon-micromachined scanning confocal optical microscope , 1998 .

[23]  V. Aksyuk,et al.  Wavelength add-drop switching using tilting micromirrors , 1999 .

[24]  James A. Walker,et al.  The future of MEMS in telecommunications networks , 2000 .

[25]  O. Degani,et al.  A methodology and model for the pull-in parameters of electrostatic actuators , 2001 .

[26]  Yee Loy Lam,et al.  A STUDY OF THE STATIC CHARACTERISTICS OF A TORSIONAL MICROMIRROR , 2001 .

[27]  K. R. Farmer,et al.  An angle-based design approach for rectangular electrostatic torsion actuators , 2001 .

[28]  Ai Qun Liu,et al.  Mechanical design and optimization of capacitive micromachined switch , 2001 .

[29]  Yael Nemirovsky,et al.  Erratum to “Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model”: [Sensors and Actuators A97–98: 569–578]☆ , 2002 .

[30]  O. Degani,et al.  Design considerations of rectangular electrostatic torsion actuators based on new analytical pull-in expressions , 2002 .

[31]  O. Bochobza-Degani,et al.  Modeling the Pull-In Parameters of Electrostatic Actuators with a Novel Lumped Two Degrees of Freedom Pull in Model , 2002 .