Convergence of the Simulated Annealing Algorithm for Continuous Global Optimization

A class of simulated annealing algorithms for continuous global optimization is considered in this paper. The global convergence property is analyzed with respect to the objective value sequence and the minimum objective value sequence induced by simulated annealing algorithms. The convergence analysis provides the appropriate conditions on both the generation probability density function and the temperature updating function. Different forms of temperature updating functions are obtained with respect to different kinds of generation probability density functions, leading to different types of simulated annealing algorithms which all guarantee the convergence to the global optimum.

[1]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[2]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[3]  S. Mitter,et al.  Recursive stochastic algorithms for global optimization in R d , 1991 .

[4]  John W. Woods,et al.  Simulated annealing in compound Gaussian random fields , 1990, IEEE Trans. Inf. Theory.

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  S. Mitter,et al.  Metropolis-type annealing algorithms for global optimization in R d , 1993 .

[7]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[8]  Alberto L. Sangiovanni-Vincentelli,et al.  A theoretical framework for simulated annealing , 1991, Algorithmica.

[9]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[10]  H. Szu Fast simulated annealing , 1987 .

[11]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[12]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[13]  L. Ingber Very fast simulated re-annealing , 1989 .

[14]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[15]  C. Hwang,et al.  Diffusion for global optimization in R n , 1987 .

[16]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[17]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .