Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes

In light of the depletion of fossil fuels and the increased daily requirements for liquid fuels and chemicals, CO2 should indeed be regarded as a valuable C1 additional feedstock for sustainable manufacturing of liquid fuels and chemicals. Development and deployment of CO2 capture and chemical conversion processes are among the grand challenges faced by today’s scientists and engineers. Very few of the reported CO2 capture and conversion technologies have been employed for industrial installations on a large scale, where high-efficiency, cost/energy-effectiveness, and environmental friendliness are three keys factors. The CO2 capture technologies from stationary sources and ambient air based on solvents, solid sorbents, and membranes are discussed first. Transforming CO2 to liquid fuels and chemicals, which are presently produced from petroleum, through thermochemical, electrochemical, photochemical, and biochemical routes are discussed next. The relevant state-of-the-art computational methods and tools a...

[1]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[2]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[3]  J. Mehr,et al.  Synthesis of higher alcohols from syngas over Cu-Co2O3/ZnO, Al2O3 catalyst , 2005 .

[4]  D. J. Stevens,et al.  Mixed Alcohol Synthesis Catalyst Screening , 2007 .

[5]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[6]  Hari C. Mantripragada,et al.  The outlook for improved carbon capture technology , 2012 .

[7]  Richard Monastersky,et al.  Global carbon dioxide levels near worrisome milestone , 2013, Nature.

[8]  Jan D. Miller,et al.  Synthesis of DME from CO2/H2 gas mixture , 2011 .

[9]  Siglinda Perathoner,et al.  Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production. , 2014, Chemical Society reviews.

[10]  Curtis P. Berlinguette,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. , 2013 .

[11]  Lei Bi,et al.  Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. , 2014, Chemical Society reviews.

[12]  Waldemar Liebner,et al.  CO2-based methanol and DME – Efficient technologies for industrial scale production , 2011 .

[13]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[14]  Yixiang Shi,et al.  Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide , 2014 .

[15]  W. S. Winston Ho,et al.  CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol) , 2006 .

[16]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[17]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[18]  Xinlin Hong,et al.  Electronic modulation of a copper/zinc oxide catalyst by a heterojunction for selective hydrogenation of carbon dioxide to methanol. , 2012, Angewandte Chemie.

[19]  Uwe Rodemerck,et al.  Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles , 2013 .

[20]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[21]  J. Zuboy,et al.  Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2 , 2009 .

[22]  Li-Chiang Lin,et al.  Large-scale screening of zeolite structures for CO2 membrane separations. , 2013, Journal of the American Chemical Society.

[23]  Christodoulos A Floudas,et al.  Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[24]  Ping Liu,et al.  Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). , 2010, Physical chemistry chemical physics : PCCP.

[25]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[26]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[27]  Omid Ghaffari Nik,et al.  Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation , 2012 .

[28]  Niklas von der Assen,et al.  Life cycle assessment of CO2 capture and utilization: a tutorial review. , 2014, Chemical Society reviews.

[29]  Zheng Wang,et al.  Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. , 2012, Angewandte Chemie.

[30]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[31]  Richard L. Kurtz,et al.  Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces , 2011 .

[32]  Xin Sun,et al.  Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays , 2014 .

[33]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[34]  David Dubbeldam,et al.  Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[35]  A. Akimov,et al.  Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. , 2015, Chemical reviews.

[36]  C. Serre,et al.  An adsorbent performance indicator as a first step evaluation of novel sorbents for gas separations: application to metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[37]  Tingting Shi,et al.  Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory , 2015 .

[38]  Steven M Gorelick,et al.  Earthquake triggering and large-scale geologic storage of carbon dioxide , 2012, Proceedings of the National Academy of Sciences.

[39]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[40]  David S Sholl,et al.  Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[41]  Weikang Hu Electrocatalytic properties of new electrocatalysts for hydrogen evolution in alkaline water electrolysis , 2000 .

[42]  Christodoulos A Floudas,et al.  Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. , 2013, Physical chemistry chemical physics : PCCP.

[43]  M. Adams,et al.  Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. , 2013, Current opinion in biotechnology.

[44]  Ryan P. Lively,et al.  Dynamic CO2 adsorption performance of internally cooled silica‐supported poly(ethylenimine) hollow fiber sorbents , 2014 .

[45]  S. Han,et al.  Diamine-functionalized metal-organic framework: Exceptionally high CO 2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism , 2014 .

[46]  James Spivey,et al.  A review of dry (CO2) reforming of methane over noble metal catalysts. , 2014, Chemical Society reviews.

[47]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[48]  Ryan P. Lively,et al.  Synthesis–Structure–Property Relationships for Hyperbranched Aminosilica CO2 Adsorbents , 2009 .

[49]  Jürgen Klankermayer,et al.  Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst , 2012 .

[50]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[51]  David W. Keith,et al.  Why Capture CO2 from the Atmosphere? , 2009, Science.

[52]  K. Lackner Capture of carbon dioxide from ambient air , 2009 .

[53]  Patrice de Caritat,et al.  Safe storage and effective monitoring of CO2 in depleted gas fields , 2011, Proceedings of the National Academy of Sciences.

[54]  Stephen E. Zitney,et al.  Optimization of IGCC processes with reduced order CFD models , 2011, Comput. Chem. Eng..

[55]  Laurent Maron,et al.  A highly active phosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. , 2013, Journal of the American Chemical Society.

[56]  Ling Tao,et al.  Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803 , 2012 .

[57]  S. E. Voltz,et al.  Process Variable Effects in the Conversion of Methanol to Gasoline in a Fluid Bed Reactor , 1978 .

[58]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[59]  Matthew W. Kanan,et al.  Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper , 2014, Nature.

[60]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[61]  Paul Alivisatos,et al.  Basic Research Needs for Carbon Capture: Beyond 2020 , 2010 .

[62]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[63]  Rajshree Singh,et al.  Novel electrocatalysts for generating oxygen from alkaline water electrolysis , 2007 .

[64]  A. Fujishima,et al.  High-yield electrochemical production of formaldehyde from CO2 and seawater. , 2014, Angewandte Chemie.

[65]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[66]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[67]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[68]  Ryan P. Lively,et al.  Poly(amide-imide)/silica supported PEI hollow fiber sorbents for postcombustion CO(2) capture by RTSA. , 2014, ACS applied materials & interfaces.

[69]  Christopher W. Jones,et al.  Dynamics of CO2 Adsorption on Amine Adsorbents. 2. Insights Into Adsorbent Design , 2012 .

[70]  M. Ruiz,et al.  Catalysis for Biomass and CO2 Use Through Solar Energy: Opening New Scenarios for a Sustainable and Low-Carbon Chemical Production , 2015 .

[71]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.

[72]  S. Atsumi,et al.  Synthetic biology and metabolic engineering approaches to produce biofuels. , 2013, Chemical reviews.

[73]  Robert B. May,et al.  Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. , 2015, Journal of the American Chemical Society.

[74]  Rajamani Krishna,et al.  Design and scale up of a bubble column slurry reactor for Fischer–Tropsch synthesis , 2001 .

[75]  M. Gray,et al.  Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture. , 2015, ChemSusChem.

[76]  Christopher W. Jones,et al.  Poly(allylamine)–Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air , 2011 .

[77]  J. S. Lee,et al.  Barium Substituted Lanthanum Manganite Perovskite for CO2 Reforming of Methane , 2013 .

[78]  Michael James,et al.  Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) , 2014 .

[79]  André Bardow,et al.  Continuous Molecular Targeting–Computer-Aided Molecular Design (CoMT–CAMD) for Simultaneous Process and Solvent Design for CO2 Capture , 2014 .

[80]  B. Laird,et al.  A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks , 2013 .

[81]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[82]  G. Olah,et al.  Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. , 2013, Journal of the American Chemical Society.

[83]  W. Leitner,et al.  Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. , 2012, Angewandte Chemie.

[84]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[85]  Donghwa Lee,et al.  Role of four-fold coordinated titanium and quantum confinement in CO2 reduction at titania surface. , 2012, Journal of the American Chemical Society.

[86]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[87]  A. Steinfeld,et al.  Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. , 2015, Environmental science & technology.

[88]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[89]  Jean-Michel Savéant,et al.  Catalysis of the electrochemical reduction of carbon dioxide. , 2013, Chemical Society reviews.

[90]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[91]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[92]  John R. Benemann,et al.  Feasibility analysis of photobiological hydrogen production , 1997 .

[93]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[94]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[95]  Christopher W. Jones,et al.  Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide , 2015 .

[96]  James C. Liao,et al.  Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels , 2013 .

[97]  H. Friedrich,et al.  Towards stable catalysts by controlling collective properties of supported metal nanoparticles. , 2013, Nature materials.

[98]  Rodrigo Serna-Guerrero,et al.  New Insights into the Interactions of CO2 with Amine-Functionalized Silica , 2008 .

[99]  Jean-Paul Lange,et al.  Methanol synthesis: a short review of technology improvements , 2001 .

[100]  M. Pera‐Titus,et al.  Porous inorganic membranes for CO2 capture: present and prospects. , 2014, Chemical reviews.

[101]  May-Britt Hägg,et al.  Separation performance of PVAm composite membrane for CO2 capture at various pH levels , 2013 .

[102]  Jinsong Zhao,et al.  An overview on controllability analysis of chemical processes , 2011 .

[103]  Clem E. Powell,et al.  Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases , 2006 .

[104]  Christodoulos A. Floudas,et al.  Discovery of novel zeolites for natural gas purification through combined material screening and process optimization , 2014 .

[105]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[106]  T. Mokari,et al.  Rational Design of Hybrid Nanostructures for Advanced Photocatalysis , 2013 .

[107]  Berend Smit,et al.  Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. , 2008, Chemical reviews.

[108]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[109]  K. P. Jong,et al.  Catalysts for Production of Lower Olefins from Synthesis Gas: A Review , 2013 .

[110]  Kwang Myung Cho,et al.  Integrated Electromicrobial Conversion of CO2 to Higher Alcohols , 2012, Science.

[111]  Hansung Kim,et al.  Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells. , 2010, Journal of the American Chemical Society.

[112]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[113]  Arno de Klerk,et al.  Fischer-Tropsch Refining: DE KLERK:FISCHER-TROPSCH O-BK , 2011 .

[114]  Aldo Steinfeld,et al.  Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air. , 2011, Environmental science & technology.

[115]  Mark R. Wilkins,et al.  Carbon dioxide conversion to fuels and chemicals using a hybrid green process , 2013 .

[116]  K. D. de Jong,et al.  Suppression of carbon deposition in the iron-catalyzed production of lower olefins from synthesis gas. , 2012, Angewandte Chemie.

[117]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[118]  Christopher W. Jones,et al.  Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. , 2012, ChemSusChem.

[119]  David S. Sholl,et al.  Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air , 2012 .

[120]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[121]  M. Fischer,et al.  Influence of Zeolite Topology on CO2/N2 Separation Behavior: Force-Field Simulations Using a DFT-Derived Charge Model , 2012 .

[122]  Ichiro Yoshida,et al.  Electrocatalytic reduction of CO2 to methanol: Part 9: Mediation with metal porphyrins , 1988 .

[123]  S. Kaliaguine,et al.  Predictive models for mixed-matrix membrane performance: a review. , 2013, Chemical reviews.

[124]  G. Olah,et al.  Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. , 2013, Journal of the American Chemical Society.

[125]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[126]  N. Chemmangattuvalappil,et al.  A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices , 2013 .

[127]  Ruili Guo,et al.  Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation , 2015 .

[128]  Sichao Ma,et al.  Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. , 2012, Journal of the American Chemical Society.

[129]  Jixiao Wang,et al.  A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances , 2015 .

[130]  R. K. Yadav,et al.  A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. , 2012, Journal of the American Chemical Society.

[131]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[132]  Jan Pawel Stempien,et al.  Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A thermodynamic assessment , 2015 .

[133]  Christopher W. Jones,et al.  Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air , 2011 .

[134]  S. Kulprathipanja,et al.  Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity , 2007 .

[135]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[136]  Rafiqul Gani,et al.  Design of Formulated Products: A Systematic Methodology , 2011 .

[137]  P. Linko Fuels and industrial chemicals. , 1983, Biotechnology advances.

[138]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[139]  S. Atsumi,et al.  Cyanobacterial conversion of carbon dioxide to 2,3-butanediol , 2013, Proceedings of the National Academy of Sciences.

[140]  G. Olah,et al.  Anthropogenic chemical carbon cycle for a sustainable future. , 2011, Journal of the American Chemical Society.

[141]  Manya Ranjan,et al.  Economic and energetic analysis of capturing CO2 from ambient air , 2011, Proceedings of the National Academy of Sciences.

[142]  Xinchen Wang,et al.  Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. , 2014, Angewandte Chemie.

[143]  W. Ho,et al.  CO2 capture and H2 purification: Prospects for CO2‐selective membrane processes , 2013 .

[144]  Chongli Zhong,et al.  Revealing the structure-property relationship of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study. , 2014, Physical chemistry chemical physics : PCCP.

[145]  Yuguang Ma,et al.  Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[146]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[147]  Christos T. Maravelias,et al.  Fuel production from CO2 using solar-thermal energy: system level analysis , 2012 .

[148]  Christopher W. Jones,et al.  Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. , 2011, Environmental science & technology.

[149]  J. Tour,et al.  Green carbon as a bridge to renewable energy. , 2010, Nature materials.

[150]  Paul J. A. Kenis,et al.  Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities , 2013 .

[151]  Anil Verma,et al.  Effect of solid polymer electrolyte on electrochemical reduction of CO2 , 2012 .

[152]  B. Smit,et al.  Mapping of Functional Groups in Metal-Organic Frameworks , 2013, Science.

[153]  Liping Yu,et al.  Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. , 2012, Physical review letters.

[154]  B. Arstad,et al.  The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. , 2001, Journal of the American Chemical Society.

[155]  Christos T. Maravelias,et al.  A general framework for the assessment of solar fuel technologies , 2015 .

[156]  Avni Jain,et al.  Inverse methods for material design , 2014, 1405.4060.

[157]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[158]  Gvozden S. Tasic,et al.  Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators , 2015 .

[159]  Tao Wang,et al.  Moisture swing sorbent for carbon dioxide capture from ambient air. , 2011, Environmental science & technology.

[160]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[161]  Erwin Reisner,et al.  Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. , 2010, Journal of the American Chemical Society.

[162]  S. Kaliaguine,et al.  Effect of alkali additives over nanocrystalline Co–Cu-based perovskites as catalysts for higher-alcohol synthesis , 2007 .

[163]  M. Pera‐Titus,et al.  Technico‐economical assessment of MFI‐type zeolite membranes for CO2 capture from postcombustion flue gases , 2012 .

[164]  Atsuto Seko,et al.  Theoretical Photovoltaic Conversion Efficiencies of ZnSnP2, CdSnP2, and Zn1-xCdxSnP2 Alloys , 2013 .

[165]  V. Pareek,et al.  Some aspects of photocatalytic reactor modeling using computational fluid dynamics , 2013 .

[166]  Eric Favre,et al.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .

[167]  J. Spivey,et al.  Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. , 2007, Chemical Society reviews.

[168]  Li-Chiang Lin,et al.  Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. , 2012, Journal of the American Chemical Society.

[169]  J. Liao,et al.  Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria , 2013 .

[170]  Xinhua Liang,et al.  Efficient Generation of H2 by Splitting Water with an Isothermal Redox Cycle , 2013, Science.

[171]  Yong Kyu Lee,et al.  Design and modeling of large-scale cross-current multichannel Fischer–Tropsch reactor using channel decomposition and cell-coupling method , 2015 .

[172]  G. Trunfio,et al.  Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation , 2013 .

[173]  K. Nagai,et al.  Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions , 2001 .

[174]  Pio Forzatti,et al.  Higher Alcohol Synthesis , 1991 .

[175]  B. C. Ng,et al.  Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .

[176]  G. Olah,et al.  Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere , 2012 .

[177]  M. Miyauchi,et al.  Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. , 2015, ACS nano.

[178]  J. Topp-Jørgensen Topsøe Integrated Gasoline Synthesis – The Tigas Process , 1988 .

[179]  Nikhil V. Medhekar,et al.  Postcombustion CO2 Capture in Functionalized Porous Coordination Networks , 2013 .

[180]  Zhihong Yuan,et al.  Process synthesis for addressing the sustainable energy systems and environmental issues , 2012 .

[181]  David C. Miller,et al.  Dynamic Reduced Order Models for Simulating Bubbling Fluidized Bed Adsorbers , 2015 .

[182]  Michele Aresta,et al.  Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. , 2014, Chemical reviews.

[183]  C. Kirschhock,et al.  Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[184]  Seda Keskin,et al.  Molecular modeling of MOF and ZIF-filled MMMs for CO2/N2 separations , 2014 .

[185]  S. Parker,et al.  Vibrational analysis of an industrial Fe-based Fischer-Tropsch catalyst employing inelastic neutron scattering. , 2013, Angewandte Chemie.

[186]  Hailiang Wang,et al.  Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. , 2013, Journal of the American Chemical Society.

[187]  Youssef Belmabkhout,et al.  Stabilization of amine-containing CO(2) adsorbents: dramatic effect of water vapor. , 2010, Journal of the American Chemical Society.

[188]  M. Comotti,et al.  Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. , 2014, Angewandte Chemie.

[189]  J. Ross Natural gas reforming and CO2 mitigation , 2005 .

[190]  M. Eden,et al.  Effect of reaction conditions on supercritical hexanes mediated higher alcohol synthesis over a Cu ? Co ? Zn catalyst , 2014 .

[191]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[192]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[193]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[194]  Michael T. Mock,et al.  A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. , 2013, Journal of the American Chemical Society.

[195]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[196]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[197]  J. Védrine,et al.  Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite , 1980 .

[198]  J. Bitter,et al.  Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins , 2012, Science.

[199]  Stephen E. Zitney,et al.  A Superstructure-Based Optimal Synthesis of PSA Cycles for Post-Combustion CO2 Capture , 2009 .

[200]  V. Müller,et al.  Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase , 2013, Science.

[201]  Seoin Back,et al.  Selective Heterogeneous CO2 Electroreduction to Methanol , 2015 .

[202]  Faizan Ahmad,et al.  Process simulation and optimal design of membrane separation system for CO2 capture from natural gas , 2012, Comput. Chem. Eng..

[203]  Michael R. Thompson,et al.  Basic Research Needs: Catalysis for Energy , 2008 .

[204]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[205]  Angel Irabien,et al.  Towards the electrochemical conversion of carbon dioxide into methanol , 2015 .

[206]  Christopher W. Jones,et al.  Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. , 2012, The journal of physical chemistry letters.

[207]  Hui Peng,et al.  Worm-like InP/TiO2 NTs heterojunction with unmatched energy band photo-enhanced electrocatalytic reduction of CO2 to methanol , 2014 .

[208]  L. Biegler,et al.  Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture , 2010 .

[209]  André Bardow,et al.  Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls , 2013 .

[210]  Gary T. Rochelle,et al.  Carbon dioxide capture with concentrated, aqueous piperazine , 2009 .

[211]  M. Eden,et al.  Supercritical Adiabatic Reactor for Fischer–Tropsch Synthesis , 2013 .

[212]  Yong Yan,et al.  Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. , 2013, Journal of the American Chemical Society.

[213]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[214]  Renato Baciocchi,et al.  Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor , 2013, Climatic Change.

[215]  Zhongmin Liu,et al.  Methanol to Olefins (MTO): From Fundamentals to Commercialization , 2015 .

[216]  Robert B. May,et al.  Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. , 2011, Journal of the American Chemical Society.

[217]  G. Jackson,et al.  Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. , 2013, Journal of the American Chemical Society.

[218]  David W. Keith,et al.  Why Capture CO2 from the Atmosphere? , 2009, Science.

[219]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[220]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[221]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[222]  Q. Ge,et al.  Adsorption and activation of CO2 over the Cu–Co catalyst supported on partially hydroxylated γ-Al2O3 , 2011 .

[223]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[224]  Thomas F. Jaramillo,et al.  New cubic perovskites for one- and two-photon water splitting using the computational materials repository , 2012 .

[225]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[226]  Uthaiporn Suriyapraphadilok,et al.  Development of sustainable CO2 conversion processes for the methanol production , 2015 .

[227]  Li-Chiang Lin,et al.  Understanding CO2 dynamics in metal-organic frameworks with open metal sites. , 2013, Angewandte Chemie.

[228]  Christopher W. Jones,et al.  Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture. , 2012, Journal of the American Chemical Society.

[229]  T. Merkel,et al.  Carbon dioxide capture with membranes at an IGCC power plant , 2012 .

[230]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[231]  Sankar Nair,et al.  Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges. , 2012, Journal of the American Chemical Society.

[232]  Avelino Corma,et al.  185 nm photoreduction of CO2 to methane by water. Influence of the presence of a basic catalyst. , 2012, Journal of the American Chemical Society.

[233]  Qiang Zhang,et al.  Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether , 2010 .

[234]  Christopher W. Jones,et al.  Poly(L-lysine) brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air. , 2011, Chemistry.

[235]  S. Blaszkowski,et al.  Theoretical study of C-C bond formation in the methanol to gasoline process , 1997 .

[236]  A. Veen,et al.  Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins , 2015 .

[237]  M. Mazzotti,et al.  MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: Breakthrough experiments and process design , 2013 .

[238]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[239]  F. Karadaş,et al.  Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening , 2010 .

[240]  B. Spigarelli,et al.  Opportunities and challenges in carbon dioxide capture , 2013 .

[241]  Pierre Millet,et al.  Electrochemical characterization of Polymer Electrolyte Membrane Water Electrolysis Cells , 2014 .

[242]  Mayank Gupta,et al.  Heterogeneous Catalytic Conversion of Dry Syngas to Ethanol and Higher Alcohols on Cu-Based Catalysts , 2011 .

[243]  T. Kamiya,et al.  Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. , 2015, Physical chemistry chemical physics : PCCP.

[244]  Atsuto Seko,et al.  Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single- and binary-component solids , 2013, 1310.1546.

[245]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[246]  Marco Mazzotti,et al.  Temperature Swing Adsorption for the Recovery of the Heavy Component: An Equilibrium-Based Shortcut Model , 2015 .

[247]  W. S. Winston Ho,et al.  Crosslinked polyvinylalcohol–polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation , 2011 .

[248]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[249]  M. Tsapatsis Toward High-Throughput Zeolite Membranes , 2011, Science.

[250]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[251]  Matthias Wessling,et al.  Structural optimization of membrane-based biogas upgrading processes , 2015 .

[252]  Aditya Bhan,et al.  Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons , 2013 .

[253]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[254]  H. Furukawa,et al.  Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. , 2014, Angewandte Chemie.

[255]  Ryan P. Lively,et al.  CO2 Sorption Performance of Composite Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling Study , 2015 .

[256]  Olivier Jacquet,et al.  A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. , 2012, Angewandte Chemie.

[257]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[258]  Y. Yoneyama,et al.  A double-shell capsule catalyst with core–shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas , 2011 .

[259]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .