Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations.

The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This Letter presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these systems and takes a significant step toward predicting and tailoring the damping constants of new materials.

[1]  Gang Xiao,et al.  The role of electron scattering in magnetization relaxation in thin Ni$_{81}$Fe$_{19}$ films , 2002, cond-mat/0208207.

[2]  I. Barsukov,et al.  Low relaxation rate in epitaxial vanadium-doped ultrathin iron films. , 2007, Physical review letters.

[3]  V. Kamberský FMR linewidth and disorder in metals , 1984 .

[4]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[5]  C. Kao,et al.  Precessional dynamics of elemental moments in a ferromagnetic alloy , 2004, cond-mat/0405295.

[6]  L. Hedin,et al.  A local exchange-correlation potential for the spin polarized case. i , 1972 .

[7]  L. Connors,et al.  Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin films , 2007 .

[8]  D. Steiauf,et al.  Damping of spin dynamics in nanostructures: An ab initio study , 2005 .

[9]  Theo Rasing,et al.  Magnetization dynamics in NiFe thin films induced by short in-plane magnetic field pulses , 2001 .

[10]  V. Kamberský On the Landau-Lifshitz relaxation in ferromagnetic metals , 1970 .

[11]  R. McMichael,et al.  Calculation of Damping Rates in Thin Inhomogeneous Ferromagnetic Films Due to Coupling to Lattice Vibrations , 2002 .

[12]  Pavel Kabos,et al.  Control of magnetization dynamics in Ni/sub 81/Fe/sub 19/ thin films through the use of rare-earth dopants , 2001 .

[13]  Gregory A. Fiete,et al.  Mean-field magnetization relaxation in conducting ferromagnets , 2004 .

[14]  R. McMichael,et al.  Intrinsic damping and intentional ferromagnetic resonance broadening in thin Permalloy films , 2003 .

[15]  J. Dankovicová Czech , 1997, Journal of the International Phonetic Association.

[16]  V. Kamberský On ferromagnetic resonance damping in metals , 1976 .

[17]  Burkard Hillebrands,et al.  Spin Dynamics in Confined Magnetic Structures III , 2002 .

[18]  S. M. Bhagat,et al.  Temperature variation of ferromagnetic relaxation in the 3 d transition metals , 1974 .

[19]  Hamann,et al.  Linear augmented-plane-wave calculation of the structural properties of bulk Cr, Mo, and W. , 1986, Physical review. B, Condensed matter.

[20]  Dynamics of magnetization coupled to a thermal bath of elastic modes , 2005, cond-mat/0505331.

[21]  M. Stiles,et al.  Spin-other-orbit interaction and magnetocrystalline anisotropy , 2001 .

[22]  J. Kuneš,et al.  First-principles investigation of the damping of fast magnetization precession in ferromagnetic 3d metals , 2002 .

[23]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[24]  B. Heinrich,et al.  Wave number and temperature dependent Landau‐Lifshitz damping in nickel , 1979 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  B. Heinrich,et al.  The Influence of s-d Exchange on Relaxation of Magnons in Metals , 1967, October 1.

[27]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[28]  B. Heinrich,et al.  Microwave transmission through ferromagnetic metals , 1980 .

[29]  R. Prange,et al.  Anomalous Damping of Spin Waves in Magnetic Metals , 1972 .