Modelling dynamic failure of concrete with meshfree methods

This paper studies the dynamic failure of concrete structures under blast and impact loading. We will propose a model which can capture many important effects when concrete is subjected to high dynamic loading conditions and large deformations. These effects are the strength increase which we attribute to inertia effects, the compaction of the material under high hydrostatic pressure and the anisotropy of the material in tension. A Lagrangian particle method is used which can easily handle large deformations and fracture. Fragmentation occurs naturally governed by the constitutive model due to separation of the particles. Comparisons between experiments and the simulations are discussed and show good agreement.

[1]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[2]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[3]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[4]  L. A. Glenn,et al.  Strain‐energy effects on dynamic fragmentation , 1986 .

[5]  L. Seaman,et al.  Simplified Models of Fracture and Fragmentation , 1996 .

[6]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[7]  J. Weertman,et al.  Cohesive solutions of intersonic moving dislocations , 2004 .

[8]  R. M. Zimmerman,et al.  Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions , 1970 .

[9]  D. Grady Fragmentation of rapidly expanding jets and sheets , 1987 .

[10]  Mohsen Shahinpoor,et al.  High pressure shock compression of solids II : dynamic fracture and fragmentation , 1996 .

[11]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[12]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[13]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[14]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[15]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[16]  M. J. Forrestal,et al.  Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths , 1992 .

[17]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[18]  G. R. Johnson,et al.  Recent epic code developments for high velocity impact: 3D element arrangements and 2D fragment distributions , 1990 .

[19]  E. H. Linfoot,et al.  A Theory of Fragmentation , 2006 .

[20]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[21]  Timon Rabczuk,et al.  Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach , 2004 .

[22]  M. E. Kipp,et al.  Continuum modelling of explosive fracture in oil shale , 1980 .

[23]  Dennis E. Grady,et al.  Local inertial effects in dynamic fragmentation , 1982 .

[24]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[25]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[26]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[27]  P. Rossi A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates , 1991 .

[28]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[29]  Heinz Konietzky,et al.  PFC - ein neues Werkzeug für numerische Modellierungen , 1996 .

[30]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[31]  T. Rabczuk,et al.  Simulation of high velocity concrete fragmentation using SPH/MLSPH , 2003 .

[32]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[33]  J. Chaboche,et al.  Multiscale modelling of titanium aluminides , 2004 .

[34]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[35]  A. Yarin Free Liquid Jets and Films: Hydrodynamics and Rheology , 1993 .

[36]  Dennis E. Grady,et al.  The spall strength of condensed matter , 1988 .

[37]  D. Grady,et al.  Fragmentation properties of metals , 1996 .

[38]  F. Donze,et al.  Modeling fractures in rock blasting , 1997 .