Second-order explicit difference schemes for the space fractional advection diffusion equation

In this paper, two kinds of explicit second order difference schemes are developed to solve the space fractional advection diffusion equation. The discretizations of fractional derivatives are based on the weighted and shifted Grunwald difference operators developed in Meerschaert and Tadjeran, J.Comput.Appl.Math. 172 (2004) 65-77; Tian et al., arXiv:1201.5949; Li and Deng, arXiv:1310.7671. The stability of the presented difference schemes are discussed by means of von Neumann analysis. The analysis shows that the presented numerical schemes are both conditionally stable. The necessary conditions of stability is discussed. Finally, the results of numerical experiments are given to illustrate the performance of the presented numerical methods.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[3]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[4]  I. Turner,et al.  A novel numerical approximation for the space fractional advection-dispersion equation , 2014 .

[5]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[6]  Vijay P. Singh,et al.  Numerical Solution of Fractional Advection-Dispersion Equation , 2004 .

[7]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[8]  Ercília Sousa,et al.  Finite difference approximations for a fractional advection diffusion problem , 2009, J. Comput. Phys..

[9]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[10]  Yong Zhou Basic Theory of Fractional Differential Equations , 2014 .

[11]  C. Lubich Discretized fractional calculus , 1986 .

[12]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[13]  Stability analysis of finite difference schemes for the advection-diffusion equation , 1983 .

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  A. Chaves,et al.  A fractional diffusion equation to describe Lévy flights , 1998 .

[16]  Can Li,et al.  A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative , 2011, 1109.2345.

[17]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[18]  Hai-Wei Sun,et al.  Multigrid method for fractional diffusion equations , 2012, J. Comput. Phys..

[19]  Fawang Liu,et al.  A finite volume method for solving the two-sided time-space fractional advection-dispersion equation , 2012 .

[20]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[21]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[22]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[23]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[24]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[25]  Fawang Liu,et al.  A spatially second-order accurate implicit numerical method for the space and time fractional Bloch-Torrey equation , 2014, Numerical Algorithms.

[26]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[27]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[28]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[29]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[30]  Weihua Deng,et al.  EFFICIENT NUMERICAL ALGORITHMS FOR THREE-DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS , 2014 .

[31]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[32]  Ercília Sousa,et al.  A second order explicit finite difference method for the fractional advection diffusion equation , 2012, Comput. Math. Appl..