A Landau’s theorem in several complex variables
暂无分享,去创建一个
[1] C. Stoppato,et al. Landau’s theorem for slice regular functions on the quaternionic unit ball , 2017, 1701.08112.
[2] C. Stoppato,et al. Regular vs. Classical Möbius Transformations of the Quaternionic Unit Ball , 2012, 1209.2351.
[3] C. Stoppato,et al. The Schwarz-Pick lemma for slice regular functions , 2012, 1209.2060.
[4] Graziano Gentili,et al. M\"obius transformations and the Poincar\'e distance in the quaternionic setting , 2008, 0805.0357.
[5] Gabriela Kohr,et al. Geometric Function Theory in One and Higher Dimensions , 2003 .
[6] H. Chen,et al. Bloch constants in several variables , 2000 .
[7] Lawrence Zalcman,et al. Normal families: New perspectives , 1998 .
[8] 鶴見 和之. Univalent Mappings of Several Complex Variables , 1996 .
[9] Dror Varolin,et al. BLOCH CONSTANTS IN ONE AND SEVERAL VARIABLES , 1996 .
[10] C. FitzGerald,et al. The Bloch theorem in several complex variables , 1994 .
[11] Chuan-Gan Hu,et al. Normal families of holomorphic mappings , 1992 .
[12] Xiang Liu. Bloch functions of several complex variables , 1992 .
[13] W. Rudin,et al. Distortion in several variables , 1986 .
[14] L. Harris. On the size of balls covered by analytic transformations , 1977 .
[15] Lawrence Zalcman,et al. A Heuristic Principle in Complex Function Theory , 1975 .
[16] K. T. Hahn. Higher dimensional generalizations of the Bloch constant and their lower bounds , 1973 .
[17] E. Landau. Über die Blochsche Konstante und zwei verwandte Weltkonstanten , 1929 .
[18] W. Groß. Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie , 1917 .
[19] G. Gentili,et al. On the Geometry of the Quaternionic Unit Disc , 2011 .
[20] Vincent Guedj. DYNAMIQUE DES APPLICATIONS RATIONNELLES DES , 2007 .
[21] G. Pólya,et al. Functions of One Complex Variable , 1998 .
[22] R. Miniowitz. Normal families of quasimeromorphic mappings , 1982 .
[23] J. Fornæss,et al. Regular holomorphic images of balls , 1982 .