A Landau’s theorem in several complex variables

[1]  C. Stoppato,et al.  Landau’s theorem for slice regular functions on the quaternionic unit ball , 2017, 1701.08112.

[2]  C. Stoppato,et al.  Regular vs. Classical Möbius Transformations of the Quaternionic Unit Ball , 2012, 1209.2351.

[3]  C. Stoppato,et al.  The Schwarz-Pick lemma for slice regular functions , 2012, 1209.2060.

[4]  Graziano Gentili,et al.  M\"obius transformations and the Poincar\'e distance in the quaternionic setting , 2008, 0805.0357.

[5]  Gabriela Kohr,et al.  Geometric Function Theory in One and Higher Dimensions , 2003 .

[6]  H. Chen,et al.  Bloch constants in several variables , 2000 .

[7]  Lawrence Zalcman,et al.  Normal families: New perspectives , 1998 .

[8]  鶴見 和之 Univalent Mappings of Several Complex Variables , 1996 .

[9]  Dror Varolin,et al.  BLOCH CONSTANTS IN ONE AND SEVERAL VARIABLES , 1996 .

[10]  C. FitzGerald,et al.  The Bloch theorem in several complex variables , 1994 .

[11]  Chuan-Gan Hu,et al.  Normal families of holomorphic mappings , 1992 .

[12]  Xiang Liu Bloch functions of several complex variables , 1992 .

[13]  W. Rudin,et al.  Distortion in several variables , 1986 .

[14]  L. Harris On the size of balls covered by analytic transformations , 1977 .

[15]  Lawrence Zalcman,et al.  A Heuristic Principle in Complex Function Theory , 1975 .

[16]  K. T. Hahn Higher dimensional generalizations of the Bloch constant and their lower bounds , 1973 .

[17]  E. Landau Über die Blochsche Konstante und zwei verwandte Weltkonstanten , 1929 .

[18]  W. Groß Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie , 1917 .

[19]  G. Gentili,et al.  On the Geometry of the Quaternionic Unit Disc , 2011 .

[20]  Vincent Guedj DYNAMIQUE DES APPLICATIONS RATIONNELLES DES , 2007 .

[21]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[22]  R. Miniowitz Normal families of quasimeromorphic mappings , 1982 .

[23]  J. Fornæss,et al.  Regular holomorphic images of balls , 1982 .