Non-Linear Symmetry-Preserving Observers on Lie Groups

In this technical note, we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intrinsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that the error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which is reminiscent of the linear stationary case.

[1]  Philippe Martin,et al.  Non-linear observer on Lie Groups for left-invariant dynamics with right-left equivariant output , 2008 .

[2]  Jan C. Willems,et al.  Representations of symmetric linear dynamical systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[3]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[4]  S. Marcus,et al.  The structure of nonlinear control systems possessing symmetries , 1985 .

[5]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[6]  Philippe Martin,et al.  Design and Implementation of a Low-cost Attitude and Heading Nonlinear Estimator , 2008, ICINCO-SPSMC.

[7]  Robert E. Mahony,et al.  Attitude estimation on SO[3] based on direct inertial measurements , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[8]  Lorenzo Marconi,et al.  Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems , 2005 .

[9]  R. Howe,et al.  ON CLASSICAL INVARIANT THEORY , 2010 .

[10]  Pierre Rouchon,et al.  On invariant observers , 2005 .

[11]  Pascal Morin,et al.  Practical stabilization of driftless systems on Lie groups: the transverse function approach , 2003, IEEE Trans. Autom. Control..

[12]  J. Marsden,et al.  Optimal Control for Holonomic and Nonholonomic Mechanical Systems with Symmetry and Lagrangian Reduction , 1997 .

[13]  Philippe Martin,et al.  Invariant observers for attitude and heading estimation from low-cost inertial and magnetic sensors , 2007, 2007 46th IEEE Conference on Decision and Control.

[14]  T. Hamel,et al.  Complementary filter design on the special orthogonal group SO(3) , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Issa Amadou Tall,et al.  Nonlinearizable single-input control systems do not admit stationary symmetries , 2002, Syst. Control. Lett..

[16]  Philippe Martin,et al.  Symmetry-Preserving Observers , 2006, IEEE Transactions on Automatic Control.

[17]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[18]  Silvere Bonnabel,et al.  Groupe de Lie et observateur non-linéaire , 2006 .

[19]  P. Olver Classical Invariant Theory , 1999 .

[20]  M. Morari,et al.  Optimal control of piecewise affine systems: A dynamic programming approach , 2005 .