Heat kernels and function theory on metric measure spaces

It is worth observing that the Gaussian term exp ( − |x−y| 4t ) does not depend in n, whereas the other term (4πt)−n/2 reflects the dependence of the heat kernel on the underlying space via its dimension. The notion of heat kernel extends to any Riemannian manifold M. In this case, the heat kernel pt (x, y) is the minimal positive fundamental solution to the heat equation ∂u ∂t = ∆u where ∆ is the Laplace-Beltrami operator on M , and it always exists (see [11], [13], [16]). Under certain assumptions about M , the heat kernel can be estimated similarly to (1.1). For example, if M is geodesically complete and

[1]  Which values of the volume growth and escape time exponent are possible for a graph , 2004 .

[2]  Richard F. Bass,et al.  Brownian Motion and Harmonic Analysis on Sierpinski Carpets , 1999, Canadian Journal of Mathematics.

[3]  A. Telcs,et al.  Harnack inequalities and sub-Gaussian estimates for random walks , 2002 .

[4]  B. Hambly,et al.  Transition Density Estimates for Diffusion Processes on Post Critically Finite Self‐Similar Fractals , 1999 .

[5]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[6]  N. Aronszajn,et al.  Theory of Bessel potentials. I , 1961 .

[7]  J. Dodziuk,et al.  Maximum principle for parabolic inequalities and the heat flow on open manifolds , 1983 .

[8]  On function spaces related to fractional diffusions on d-sets , 2000 .

[9]  Owen Dafydd Jones,et al.  Transition probabilities for the simple random walk on the Sierpinski graph , 1996 .

[10]  Martin T. Barlow,et al.  Brownian motion on the Sierpinski gasket , 1988 .

[11]  Jiaxin Hu,et al.  Heat kernels on metric measure spaces and an application to semilinear elliptic equations , 2003 .

[12]  DIRICHLET FORMS AND SYMMETRIC MARKOV PROCESSES (Studies in Mathematics 19) By Masatoshi Fukushima, Yoshida Oshima and Masayoshi Takeda: 392 pp., DM.168.–/US$79–95, ISBN 3 11 011626 X (Walter de Gruyter, 1994). , 1997 .

[13]  V. Zolotarev One-dimensional stable distributions , 1986 .

[14]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[15]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[16]  A. Grigor’yan,et al.  Sub-Gaussian estimates of heat kernels on infinite graphs, to appera in Duke Math , 2001 .

[17]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[18]  T. Coulhon Off‐Diagonal Heat Kernel Lower Bounds Without Poincaré , 2003 .

[19]  J. Kigami,et al.  Local Nash Inequality and Inhomogeneity of Heat Kernels , 2004 .

[20]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'Ete de Probabilites de Saint-Flour XX - 1990 , 1992 .

[21]  A. Jonsson Brownian motion on fractals and function spaces , 1996 .

[22]  Robert S. Strichartz,et al.  Function spaces on fractals , 2003 .