Role of dual specificity phosphatases (DUSPs) in melanoma cellular plasticity and drug resistance

[1]  Lin Zhang,et al.  Systematic illumination of druggable genes in cancer genomes , 2022, Cell reports.

[2]  C. Swanton,et al.  Cancer evolution: Darwin and beyond , 2021, The EMBO journal.

[3]  Ye Zhang,et al.  The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. , 2021, Biochimica et biophysica acta. Reviews on cancer.

[4]  L. Zon,et al.  SPRED1 deletion confers resistance to MAPK inhibition in melanoma , 2020, The Journal of experimental medicine.

[5]  J. Utikal,et al.  Cellular Reprogramming—A Model for Melanoma Cellular Plasticity , 2020, International journal of molecular sciences.

[6]  J. Marine,et al.  Disseminated Melanoma Cells Transdifferentiate into Endothelial Cells in Intravascular Niches at Metastatic Sites. , 2020, Cell reports.

[7]  D. Pe’er,et al.  Lineage plasticity in cancer: a shared pathway of therapeutic resistance , 2020, Nature Reviews Clinical Oncology.

[8]  M. Herlyn,et al.  Nongenetic Mechanisms of Drug Resistance in Melanoma , 2020, Annual Review of Cancer Biology.

[9]  E. Filippi-Chiela,et al.  Tumor propagating cells: drivers of tumor plasticity, heterogeneity, and recurrence , 2019, Oncogene.

[10]  F. D. de Sauvage,et al.  The great escape: tumour cell plasticity in resistance to targeted therapy , 2019, Nature Reviews Drug Discovery.

[11]  M. Newton,et al.  Melanoma Progression Inhibits Pluripotency and Differentiation of Melanoma-Derived iPSCs Produces Cells with Neural-like Mixed Dysplastic Phenotype , 2019, Stem cell reports.

[12]  Zemin Zhang,et al.  GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis , 2019, Nucleic Acids Res..

[13]  R. Gómez-Villafuertes,et al.  Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells , 2019, International journal of molecular sciences.

[14]  S. Sano,et al.  Transdifferentiation of Melanoma Cells by the Reprogramming Factors Attenuates Malignant Nature In Vitro and In Vivo. , 2019, The Journal of investigative dermatology.

[15]  K. Flaherty,et al.  Toward Minimal Residual Disease-Directed Therapy in Melanoma , 2018, Cell.

[16]  Sydney M. Shaffer,et al.  A slow-cycling subpopulation of melanoma cells with highly invasive properties , 2017, Oncogene.

[17]  M. Halterman,et al.  Expression Profiling of the MAP Kinase Phosphatase Family Reveals a Role for DUSP1 in the Glioblastoma Stem Cell Niche , 2017, Cancer Microenvironment.

[18]  M. Hendrix,et al.  Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. , 2016, Pharmacology & therapeutics.

[19]  M. Askarian-Amiri,et al.  Epigenetic regulation in human melanoma: past and future , 2015, Epigenetics.

[20]  Karl T. Debiec,et al.  In Vivo Structure–Activity Relationship Studies Support Allosteric Targeting of a Dual Specificity Phosphatase , 2014, Chembiochem : a European journal of chemical biology.

[21]  S. Dalton,et al.  MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. , 2013, Genes & development.

[22]  S. Chandarlapaty,et al.  Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. , 2012, Cancer cell.

[23]  S. Nelson,et al.  Melanoma whole exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance , 2012, Nature Communications.

[24]  S. Digumarthy,et al.  Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors , 2011, Science Translational Medicine.

[25]  S. Nelson,et al.  Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation , 2010, Nature.

[26]  G. Miyoshi,et al.  The MAP kinase phosphatase, MKP-1, regulates BDNF-induced axon branching , 2010, Nature Neuroscience.

[27]  G. Pagès,et al.  The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. , 2010, American journal of physiology. Cell physiology.

[28]  N. Hirokawa,et al.  MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction , 2002, The Journal of cell biology.