Trigonal curves and algebro-geometric solutions to soliton hierarchies I

This is the first part of a study, consisting of two parts, on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, using linear combinations of Lax matrices of soliton hierarchies, we introduce trigonal curves by their characteristic equations, explore general properties of meromorphic functions defined as ratios of the Baker–Akhiezer functions, and determine zeros and poles of the Baker–Akhiezer functions and their Dubrovin-type equations. We analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.

[1]  Ruguang Zhou,et al.  Adjoint Symmetry Constraints Leading to Binary Nonlinearization , 2002 .

[2]  Wen-Xiu Ma,et al.  Semi-direct sums of Lie algebras and continuous integrable couplings , 2006, nlin/0603064.

[3]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[4]  Igor Krichever,et al.  Integration of nonlinear equations by the methods of algebraic geometry , 1977 .

[5]  Huanhe Dong,et al.  Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation , 2017, Comput. Math. Appl..

[6]  Boris Dubrovin,et al.  Theta functions and non-linear equations , 1981 .

[7]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[8]  V.,et al.  On the theory of two-dimensional stationary self-focusing of electromagnetic waves , 2011 .

[9]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[10]  Xiao Yang,et al.  An alternative approach to solve the mixed AKNS equations , 2014 .

[11]  Xianguo Geng,et al.  Decomposition of the Discrete Ablowitz–Ladik Hierarchy , 2007 .

[12]  Wen-Xiu Ma,et al.  Variational identities and applications to Hamiltonian structures of soliton equations , 2009 .

[13]  Joe W. Harris,et al.  Principles of Algebraic Geometry: Griffiths/Principles , 1994 .

[14]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[15]  Takaomi Kato,et al.  Weierstrass gap sequences at the ramification points of trigonal Riemann surfaces , 1988 .

[16]  Fritz Gesztesy,et al.  An Alternative Approach to Algebro-Geometric Solutions of the AKNS Hierarchy , 1997, solv-int/9707009.

[17]  X. Geng,et al.  Quasi-periodic solutions of mixed AKNS equations , 2010 .

[18]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[19]  H. McKean,et al.  Rational and elliptic solutions of the korteweg‐de vries equation and a related many‐body problem , 1977 .

[20]  H. Baker Note on the foregoing paper, “commutative ordinary differential operators," by J. L. Burchnall and J. W. Chaundy , 1928 .

[21]  I. Krichever Abelian solutions of the soliton equations and Riemann-Schottky problems , 2008 .

[22]  Jinbing Chen Some algebro-geometric solutions for the coupled modified Kadomtsev-Petviashvili equations arising from the Neumann type systems , 2012 .

[23]  E. Fan,et al.  Algebro-Geometric Solutions and Their Reductions for the Fokas-Lenells Hierarchy , 2013, Journal of Nonlinear Mathematical Physics.

[24]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[25]  Xianguo Geng,et al.  Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy , 2014 .

[26]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[27]  Lihua Wu,et al.  Algebro-geometric Quasi-periodic Solutions to the Three-Wave Resonant Interaction Hierarchy , 2014, SIAM J. Math. Anal..

[28]  Two kinds of new integrable decompositions of the mKdV equation , 2006 .

[29]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[30]  Fritz Gesztesy,et al.  A New Approach to the Boussinesq Hierarchy , 1999 .

[31]  Yunbo Zeng,et al.  Separation of variables for soliton equations via their binary constrained flows , 1999, solv-int/9911007.

[32]  Zhong Wang,et al.  Algebro-geometric Solutions for the Derivative Burgers Hierarchy , 2015, J. Nonlinear Sci..

[33]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[34]  H. Holden,et al.  The hyperelliptic ζ–function and the integrable massive Thirring model , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Xianguo Geng,et al.  Decomposition of the (2 + 1)- dimensional Gardner equation and its quasi-periodic solutions , 2001 .

[36]  Yuri N. Fedorov,et al.  Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians , 2001 .

[37]  Huanhe Dong,et al.  A new 4-dimensional implicit vector-form loop algebra with arbitrary constants and the corresponding computing formula of constant γ in the Variation identity , 2012, Appl. Math. Comput..

[38]  Xiaoen Zhang,et al.  Binary Nonlinearization for AKNS-KN Coupling System , 2014 .

[39]  Shunichi Tanaka,et al.  Periodic Multi-Soliton Solutions of Korteweg-de Vries Equation and Toda Lattice , 1976 .

[40]  Wenxiu Ma,et al.  Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras , 2006 .

[41]  A. O. Smirnov Real finite-gap regular solutions of the Kaup-Boussinesq equation , 1986 .

[42]  Xianguo Geng,et al.  Relation between the Kadometsev–Petviashvili equation and the confocal involutive system , 1999 .

[43]  Yunbo Zeng,et al.  Binary constrained flows and separation of variables for soliton equations , 2001, The ANZIAM Journal.

[44]  MA W.X.,et al.  Integrable Theory of the Perturbation Equations , 2004 .

[45]  Xin-Yue Li,et al.  A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy , 2016 .

[46]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1923 .

[47]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[48]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[49]  W. Ma Trigonal curves and algebro-geometric solutions to soliton hierarchies II , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  E. Previato Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation , 1985 .

[51]  Ruguang Zhou,et al.  The finite-band solution of the Jaulent–Miodek equation , 1997 .

[52]  Wen-Xiu Ma,et al.  Integrable couplings and matrix loop algebras , 2013 .

[53]  Guoliang He,et al.  Quasi-periodic Solutions of the Kaup–Kupershmidt Hierarchy , 2013, J. Nonlinear Sci..

[54]  L. Zampogni On Algebro-Geometric Solutions of the Camassa-Holm Hierarchy , 2007 .

[55]  Wen-Xiu Ma,et al.  EXACT ONE-PERIODIC AND TWO-PERIODIC WAVE SOLUTIONS TO HIROTA BILINEAR EQUATIONS IN (2+1) DIMENSIONS , 2008, 0812.4316.

[56]  Wenxiu Ma,et al.  Integrable Theory of the Perturbation Equation , 1996 .

[57]  Xianguo Geng,et al.  Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions , 2011 .

[58]  S. P. Novikov,et al.  TOPICAL REVIEW: Periodic and almost-periodic potentials in inverse problems , 1999 .

[59]  Yi Zhang,et al.  Hirota bilinear equations with linear subspaces of solutions , 2012, Appl. Math. Comput..

[60]  X. Geng,et al.  From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .

[61]  M. Schlichenmaier An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces 2nd enlarged edition , 1989 .

[62]  Xianguo Geng,et al.  Finite-band solutions of the classical Boussinesq–Burgers equations , 1999 .

[63]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[64]  M. Ablowitz,et al.  The Periodic Cubic Schrõdinger Equation , 1981 .

[65]  W. Ma Symmetry constraint of MKdV equations by binary nonlinearization , 1994 .

[66]  Fritz Gesztesy,et al.  ALGEBRO-GEOMETRIC SOLUTIONS OF THE BOUSSINESQ HIERARCHY , 1999 .

[67]  C. David Levermore,et al.  Finite genus solutions to the Ablowitz‐Ladik equations , 2010 .