The antibiotic resistome: the nexus of chemical and genetic diversity

Over the millennia, microorganisms have evolved evasion strategies to overcome a myriad of chemical and environmental challenges, including antimicrobial drugs. Even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Moreover, the potential problem of the widespread distribution of antibiotic resistant bacteria was recognized by scientists and healthcare specialists from the initial use of these drugs. Why is resistance inevitable and where does it come from? Understanding the molecular diversity that underlies resistance will inform our use of these drugs and guide efforts to develop new efficacious antibiotics.

[1]  S. Levy,et al.  Commensals upon us. , 2006, Biochemical pharmacology.

[2]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[3]  M. Arthur,et al.  Mechanisms of glycopeptide resistance in enterococci. , 1996, The Journal of infection.

[4]  J. Blanchard,et al.  A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. , 2004, Chemistry & biology.

[5]  P. Bennett,et al.  IS CR Elements : Novel Gene-Capturing Systems of the 21 st Century ? , 2006 .

[6]  G. Wright,et al.  Glycopeptide Antibiotic Resistance Genes in Glycopeptide-Producing Organisms , 1998, Antimicrobial Agents and Chemotherapy.

[7]  J. Blanchard,et al.  Structure and functions of the GNAT superfamily of acetyltransferases. , 2005, Archives of biochemistry and biophysics.

[8]  K. Poole,et al.  Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. , 2001, Current topics in medicinal chemistry.

[9]  G. Wright,et al.  DdlN from Vancomycin-Producing Amycolatopsis orientalis C329.2 Is a VanA Homologue withd-Alanyl-d-Lactate Ligase Activity , 1998, Journal of bacteriology.

[10]  P. Nordmann,et al.  Characterization of a Chromosomally Encoded Extended-Spectrum Class A β-Lactamase from Kluyvera cryocrescens , 2001, Antimicrobial Agents and Chemotherapy.

[11]  D. Livermore The need for new antibiotics. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[12]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[13]  J. Davies,et al.  The truth about antibiotics. , 2006, International journal of medical microbiology : IJMM.

[14]  M. Gilmour,et al.  The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. , 2004, Plasmid.

[15]  P. Kennelly,et al.  Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation , 1996, Journal of bacteriology.

[16]  Christopher T Walsh,et al.  Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility , 2004, Science.

[17]  D. Andersson,et al.  Persistence of antibiotic resistant bacteria. , 2003, Current opinion in microbiology.

[18]  J. Handelsman,et al.  Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. , 2004, Environmental microbiology.

[19]  R. Cantón,et al.  The CTX-M β-lactamase pandemic , 2006 .

[20]  Raquel Tobes,et al.  The TetR Family of Transcriptional Repressors , 2005, Microbiology and Molecular Biology Reviews.

[21]  J. Jernigan,et al.  Vancomycin-resistant Staphylococcus aureus in the absence of vancomycin exposure. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[22]  Liem Nguyen,et al.  Ancestral antibiotic resistance in Mycobacterium tuberculosis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jeff Pootoolal,et al.  Glycopeptide antibiotic resistance. , 2003, Annual review of pharmacology and toxicology.

[24]  C. Thompson,et al.  Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. , 2006, Trends in microbiology.

[25]  G. Wright,et al.  Molecular mechanism of VanHst, an alpha-ketoacid dehydrogenase required for glycopeptide antibiotic resistance from a glycopeptide producing organism. , 1999, Biochemistry.

[26]  G. Wright,et al.  The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009 has both D-alanyl-D-alanine and D-alanyl-D-lactate ligases. , 1997, FEMS microbiology letters.

[27]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[28]  P. Grimont,et al.  β-Lactamases of Kluyvera ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types , 2002, Antimicrobial Agents and Chemotherapy.

[29]  J. McClure,et al.  Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. , 2004, Chemistry & biology.

[30]  C. Walsh,et al.  Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. , 1996, Chemistry & biology.

[31]  D. Williams,et al.  The structure and mode of action of glycopeptide antibiotics of the vancomycin group. , 1984, Annual review of microbiology.

[32]  D. Hughes,et al.  Sampling the Antibiotic Resistome , 2006, Science.

[33]  Heinemann,et al.  How antibiotics cause antibiotic resistance. , 1999, Drug discovery today.

[34]  Honggao Yan,et al.  Hydrolysis of ATP by Aminoglycoside 3′-Phosphotransferases , 2006, Journal of Biological Chemistry.

[35]  W. Hillen,et al.  Mechanisms underlying expression of Tn10 encoded tetracycline resistance. , 1994, Annual review of microbiology.

[36]  Kim Wong,et al.  The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Monica Riley,et al.  Escherichia coli K-12: a cooperatively developed annotation snapshot—2005 , 2006, Nucleic acids research.

[38]  J. M. García Lobo,et al.  Identification of a Streptogramin A Acetyltransferase Gene in the Chromosome of Yersinia enterocolitica , 2000, Antimicrobial Agents and Chemotherapy.

[39]  Gerard D. Wright,et al.  Bacterial resistance to antibiotics: enzymatic degradation and modification. , 2005, Advanced drug delivery reviews.

[40]  P. Nordmann,et al.  Insertion Sequence ISEcp1B Is Involved in Expression and Mobilization of a blaCTX-M β-Lactamase Gene , 2003, Antimicrobial Agents and Chemotherapy.

[41]  G. Wright,et al.  Aminoglycoside antibiotics. Structures, functions, and resistance. , 1998, Advances in experimental medicine and biology.

[42]  D. Daigle,et al.  Inhibition of Aminoglycoside Antibiotic Resistance Enzymes by Protein Kinase Inhibitors* , 1997, The Journal of Biological Chemistry.

[43]  Steven R. Head,et al.  Defining the Pseudomonas aeruginosa SOS Response and Its Role in the Global Response to the Antibiotic Ciprofloxacin , 2006, Journal of bacteriology.

[44]  J. Deutscher,et al.  Ser/Thr/Tyr Protein Phosphorylation in Bacteria – For Long Time Neglected, Now Well Established , 2006, Journal of Molecular Microbiology and Biotechnology.

[45]  E. Vandamme,et al.  Biotechnology of industrial antibiotics , 1984 .

[46]  M. Gouy,et al.  WWW-query: an on-line retrieval system for biological sequence banks. , 1996, Biochimie.

[47]  J. McClure,et al.  Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Kishony,et al.  Functional classification of drugs by properties of their pairwise interactions , 2006, Nature Genetics.

[49]  P. Bennett,et al.  ISCR Elements: Novel Gene-Capturing Systems of the 21st Century? , 2006, Microbiology and Molecular Biology Reviews.

[50]  S. Levy,et al.  Antibacterial resistance worldwide: causes, challenges and responses , 2004, Nature Medicine.

[51]  Barry G. Hall,et al.  Evolution of the serine β-lactamases: past, present and future , 2004 .

[52]  S. McAllister,et al.  Vancomycin-Resistant Staphylococcus aureus Isolate from a Patient in Pennsylvania , 2004, Antimicrobial Agents and Chemotherapy.

[53]  S. Meroueh,et al.  Bacterial Resistance to β‐Lactam Antibiotics: Compelling Opportunism, Compelling Opportunity , 2005 .

[54]  Stephen K. Burley,et al.  Crystal Structure of a GCN5-Related N-acetyltransferase Serratia marcescens Aminoglycoside 3-N-acetyltransferase , 1998, Cell.

[55]  J Davies,et al.  Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[56]  O. Westphal,et al.  Paul Ehrlich--in search of the magic bullet. , 2004, Microbes and infection.

[57]  S. Projan,et al.  Antibacterial drug discovery: is it all downhill from here? , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[58]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[59]  M. Sugantino,et al.  Crystal structure of Vat(D): an acetyltransferase that inactivates streptogramin group A antibiotics. , 2002, Biochemistry.

[60]  J. Blanchard,et al.  Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates , 2002, Nature Structural Biology.

[61]  A. Robicsek,et al.  Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase , 2006, Nature Medicine.

[62]  D. Sinderen,et al.  Sequence Analysis of the Lactococcal Plasmid pNP40: a Mobile Replicon for Coping with Environmental Hazards , 2006, Journal of bacteriology.

[63]  G. Wright,et al.  Crystal structure of an aminoglycoside 6'-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. , 1999, Structure.

[64]  Robin Patel,et al.  The Biopesticide Paenibacillus popilliae Has a Vancomycin Resistance Gene Cluster Homologous to the Enterococcal VanA Vancomycin Resistance Gene Cluster , 2000, Antimicrobial Agents and Chemotherapy.

[65]  Gerry McDermott,et al.  Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump , 2003, Science.

[66]  L. Piddock Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria , 2006, Clinical Microbiology Reviews.

[67]  E. Giamarellos‐Bourboulis,et al.  Clarithromycin is an effective immunomodulator in experimental pyelonephritis caused by pan-resistant Klebsiella pneumoniae. , 2006, The Journal of antimicrobial chemotherapy.

[68]  Yoshiyuki Sakaki,et al.  Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis , 2003, Nature Biotechnology.

[69]  T. Mukhtar,et al.  Vgb from Staphylococcus aureus inactivates streptogramin B antibiotics by an elimination mechanism not hydrolysis. , 2001, Biochemistry.

[70]  C. M. Collis,et al.  Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. , 1998, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[71]  P. Nordmann,et al.  Chromosome-Encoded Ambler Class A β-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M Extended-Spectrum β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[72]  D. Andersson The biological cost of mutational antibiotic resistance: any practical conclusions? , 2006, Current opinion in microbiology.

[73]  J. Duval,et al.  Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. , 1988, The New England journal of medicine.

[74]  T. File Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[75]  Andreas Handel,et al.  The Role of Compensatory Mutations in the Emergence of Drug Resistance , 2006, PLoS Comput. Biol..

[76]  S. Levy,et al.  The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.

[77]  G. Wright,et al.  D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Patrice Courvalin,et al.  Vancomycin resistance in gram-positive cocci. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[79]  Nadine H. Elowe,et al.  Functional annotation of putative aminoglycoside antibiotic modifying proteins in Mycobacterium tuberculosis H37Rv. , 2003, The Journal of antibiotics.

[80]  J. Mcgowan Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. , 2006, American journal of infection control.

[81]  F. Kayser,et al.  Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3')-IIb, in Pseudomonas aeruginosa , 1996, Antimicrobial agents and chemotherapy.

[82]  S. Projan,et al.  Why is big Pharma getting out of antibacterial drug discovery? , 2003, Current opinion in microbiology.

[83]  Floyd E Romesberg,et al.  Open access, freely available online PLoS BIOLOGY Inhibition of Mutation and Combating the Evolution of Antibiotic Resistance , 2022 .

[84]  D. Thompson,et al.  Historical Yearly Usage of Vancomycin , 1998, Antimicrobial Agents and Chemotherapy.

[85]  P. Thompson,et al.  Molecular Mechanism of Aminoglycoside Antibiotic Kinase APH(3′)-IIIa , 2001, The Journal of Biological Chemistry.

[86]  Fred C Tenover,et al.  Mechanisms of antimicrobial resistance in bacteria. , 2006, The American journal of medicine.

[87]  J. Barrett,et al.  Antibiotics: where did we go wrong? , 2005, Drug discovery today.

[88]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[89]  E. Cundliffe How antibiotic-producing organisms avoid suicide. , 1989, Annual review of microbiology.

[90]  Robert M. Sweet,et al.  Structure of an Enzyme Required for Aminoglycoside Antibiotic Resistance Reveals Homology to Eukaryotic Protein Kinases , 1997, Cell.

[91]  D. Daigle,et al.  Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. , 1999, Chemistry & biology.

[92]  A F Goddard,et al.  Getting to the route of Helicobacter pylori treatment. , 1998, The Journal of antimicrobial chemotherapy.

[93]  G. Wright,et al.  Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance , 2004, Molecular microbiology.

[94]  C. Walsh,et al.  Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. , 1991, Biochemistry.

[95]  G. Wright,et al.  Spectinomycin Kinase from Legionella pneumophila , 1998, The Journal of Biological Chemistry.

[96]  K. Poole Aminoglycoside Resistance in Pseudomonas aeruginosa , 2005, Antimicrobial Agents and Chemotherapy.

[97]  L. Rice,et al.  Unmet medical needs in antibacterial therapy. , 2006, Biochemical pharmacology.

[98]  P. Nordmann,et al.  In Vitro Analysis of ISEcp1B-Mediated Mobilization of Naturally Occurring β-Lactamase Gene blaCTX-M of Kluyvera ascorbata , 2006, Antimicrobial Agents and Chemotherapy.

[99]  J. A. Andrews,et al.  Linezolid resistance in clinical isolates of Staphylococcus aureus. , 2003, The Journal of antimicrobial chemotherapy.

[100]  Donald Morrison,et al.  Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone , 2005, The Lancet.