On vectorial bent functions with Dillon-type exponents

We study vectorial bent functions with Dillon-type exponents. These functions have attracted attention because they are hyperbent whenever they are bent, and they achieve the highest possible algebraic degree among all bent functions on the same domain. In low dimensions we determine the simplest possible forms of such functions when they map to GF(4). We prove non-existence results for certain monomial and multinomial bent functions mapping to large codomains.

[1]  Marko J. Moisio,et al.  On zeros of Kloosterman sums , 2011, Des. Codes Cryptogr..

[2]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[3]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[4]  Yun-jung Kim ALGORITHMS FOR KLOOSTERMAN ZEROS , 2011 .

[5]  Sihem Mesnager,et al.  Four decades of research on bent functions , 2016, Des. Codes Cryptogr..

[6]  Philippe Langevin,et al.  Monomial bent functions and Stickelberger's theorem , 2008, Finite Fields Their Appl..

[7]  Peter L. Hammer,et al.  Boolean Models and Methods in Mathematics, Computer Science, and Engineering , 2010, Boolean Models and Methods.

[8]  Faruk Göloglu,et al.  Binary Kloosterman Sums Modulo 256 and Coefficients of the Characteristic Polynomial , 2012, IEEE Transactions on Information Theory.

[9]  Guang Gong,et al.  Transform domain analysis of DES , 1999, IEEE Trans. Inf. Theory.

[10]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[11]  Claude Carlet,et al.  Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[12]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[13]  Petr Lison An Efficient Characterization of a Family of Hyperbent Functions , 2011 .

[14]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[15]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[16]  Enes Pasalic,et al.  Vectorial Hyperbent Trace Functions From the $\mathcal {PS}_{\rm ap}$ Class—Their Exact Number and Specification , 2014, IEEE Transactions on Information Theory.

[17]  Amr M. Youssef,et al.  Hyper-bent Functions , 2001, EUROCRYPT.

[18]  Enes Pasalic,et al.  Vectorial Bent Functions From Multiple Terms Trace Functions , 2014, IEEE Transactions on Information Theory.

[19]  Marcel van der Vlugt,et al.  Kloosterman sums and thep-torsion of certain Jacobians , 1991 .

[20]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[21]  Petr Lisonek,et al.  On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.

[22]  P. Vijay Kumar,et al.  Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.

[23]  Chuankun Wu,et al.  On the Existence and Constructions of Vectorial Boolean Bent Functions , 2015, IACR Cryptol. ePrint Arch..

[24]  Kaisa Nyberg,et al.  Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.

[25]  CarletClaude,et al.  Four decades of research on bent functions , 2016 .

[26]  Sihem Mesnager,et al.  Hyperbent Functions via Dillon-Like Exponents , 2013, IEEE Trans. Inf. Theory.

[27]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[28]  J. Dillon Elementary Hadamard Difference Sets , 1974 .