On vectorial bent functions with Dillon-type exponents
暂无分享,去创建一个
[1] Marko J. Moisio,et al. On zeros of Kloosterman sums , 2011, Des. Codes Cryptogr..
[2] O. S. Rothaus,et al. On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.
[3] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[4] Yun-jung Kim. ALGORITHMS FOR KLOOSTERMAN ZEROS , 2011 .
[5] Sihem Mesnager,et al. Four decades of research on bent functions , 2016, Des. Codes Cryptogr..
[6] Philippe Langevin,et al. Monomial bent functions and Stickelberger's theorem , 2008, Finite Fields Their Appl..
[7] Peter L. Hammer,et al. Boolean Models and Methods in Mathematics, Computer Science, and Engineering , 2010, Boolean Models and Methods.
[8] Faruk Göloglu,et al. Binary Kloosterman Sums Modulo 256 and Coefficients of the Characteristic Polynomial , 2012, IEEE Transactions on Information Theory.
[9] Guang Gong,et al. Transform domain analysis of DES , 1999, IEEE Trans. Inf. Theory.
[10] Tetsunao Matsuta,et al. 国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .
[11] Claude Carlet,et al. Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[12] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.
[13] Petr Lison. An Efficient Characterization of a Family of Hyperbent Functions , 2011 .
[14] Guang Gong,et al. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .
[15] Claude Carlet,et al. Vectorial Boolean Functions for Cryptography , 2006 .
[16] Enes Pasalic,et al. Vectorial Hyperbent Trace Functions From the $\mathcal {PS}_{\rm ap}$ Class—Their Exact Number and Specification , 2014, IEEE Transactions on Information Theory.
[17] Amr M. Youssef,et al. Hyper-bent Functions , 2001, EUROCRYPT.
[18] Enes Pasalic,et al. Vectorial Bent Functions From Multiple Terms Trace Functions , 2014, IEEE Transactions on Information Theory.
[19] Marcel van der Vlugt,et al. Kloosterman sums and thep-torsion of certain Jacobians , 1991 .
[20] Guang Gong,et al. Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.
[21] Petr Lisonek,et al. On the Connection between Kloosterman Sums and Elliptic Curves , 2008, SETA.
[22] P. Vijay Kumar,et al. Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.
[23] Chuankun Wu,et al. On the Existence and Constructions of Vectorial Boolean Bent Functions , 2015, IACR Cryptol. ePrint Arch..
[24] Kaisa Nyberg,et al. Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.
[25] CarletClaude,et al. Four decades of research on bent functions , 2016 .
[26] Sihem Mesnager,et al. Hyperbent Functions via Dillon-Like Exponents , 2013, IEEE Trans. Inf. Theory.
[27] Claude Carlet,et al. Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.
[28] J. Dillon. Elementary Hadamard Difference Sets , 1974 .