An Efficient Combination of Texture and Color Information for Watershed Segmentation

A new segmentation technique based on a color watershed using an adaptive combination of color and texture information is proposed on this paper. This information is represented by two morphological gradients, a classical color gradient and a texture gradient based on co-occurrence matrices texture features. The two morphological gradients are then mixed using a gradient component fusion strategy and an adaptive technique to choose the weighting coefficients. The segmentation process is finally performed by applying the watershed algorithm. The obtained results are then evaluated with the MSE for several sets of parameters and color spaces.

[1]  Nicolai Petkov,et al.  Nonlinear operator for oriented texture , 1999, IEEE Trans. Image Process..

[2]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[4]  Andrea Baraldi,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[6]  S. Zucker,et al.  Finding structure in Co-occurrence matrices for texture analysis , 1980 .

[7]  Abderrahim Elmoataz,et al.  Graph-Based Ordering Scheme for Color Image Filtering , 2008, Int. J. Image Graph..

[8]  Juliette Marais,et al.  A hybrid and adaptive segmentation method using color and texture information , 2010, Electronic Imaging.

[9]  Juliette Marais,et al.  Quantification of GNSS signals accuracy: An image segmentation method for estimating the percentage of sky , 2009, 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES).

[10]  Serge Beucher,et al.  Watershed, Hierarchical Segmentation and Waterfall Algorithm , 1994, ISMM.

[11]  Nicolas Vandenbroucke Segmentation d'images couleur par classification de pixels dans des espaces d'attributs colorimétriques adaptés : application à l'analyse d'images de football , 2000 .

[12]  O. Lezoray,et al.  A graph approach to color mathematical morphology , 2005, Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005..