Lattice solitons in Bose-Einstein condensates

We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs.

[1]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[2]  R. Lutwak,et al.  Coherent Splitting of Bose-Einstein Condensed Atoms With Optically Induced Bragg Diffraction , 1999 .

[3]  Alejandro B. Aceves,et al.  Self-induced transparency solitons in nonlinear refractive periodic media , 1989, Annual Meeting Optical Society of America.

[4]  Iizuka,et al.  Gap solitons in quadratically nonlinear gratings: beyond the cascading limit , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Bose-Einstein condensates in spatially periodic potentials , 1998 .

[6]  D. Christodoulides,et al.  Discrete self-focusing in nonlinear arrays of coupled waveguides. , 1988, Optics letters.

[7]  Kristian Helmerson,et al.  Diffraction of a Released Bose-Einstein Condensate by a Pulsed Standing Light Wave , 1999 .

[8]  Biao Wu,et al.  Bloch waves and bloch bands of Bose-Einstein condensates in optical lattices , 2002 .

[9]  M. Kasevich,et al.  Squeezed States in a Bose-Einstein Condensate , 2001, Science.

[10]  E. Gross,et al.  Hydrodynamics of a Superfluid Condensate , 1963 .

[11]  J C Bronski,et al.  Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. , 2001, Physical review letters.

[12]  Dae-Il Choi,et al.  BOSE-EINSTEIN CONDENSATES IN AN OPTICAL LATTICE , 1999 .

[13]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[14]  R. Morandotti,et al.  Band-gap structure of waveguide arrays and excitation of Floquet-Bloch solitons. , 2003, Physical review letters.

[15]  C. Kittel Introduction to solid state physics , 1954 .

[16]  J C Bronski,et al.  Stability of repulsive Bose-Einstein condensates in a periodic potential. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  E. Arimondo,et al.  Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects , 2002 .

[18]  C. J. Pethick,et al.  Loop structure of the lowest Bloch band for a Bose-Einstein condensate , 2002 .

[19]  V. Konotop,et al.  Nonlinear excitations in arrays of Bose-Einstein condensates , 2001, cond-mat/0106042.

[20]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[21]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  J. Reichel,et al.  Bloch Oscillations of Atoms in an Optical Potential , 1996, EQEC'96. 1996 European Quantum Electronic Conference.

[23]  Joseph,et al.  Slow Bragg solitons in nonlinear periodic structures. , 1989, Physical review letters.

[24]  E. Hagley,et al.  Temporal, Matter-Wave-Dispersion Talbot Effect , 1999 .

[25]  P. Kevrekidis,et al.  Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  M. Kasevich,et al.  Macroscopic quantum interference from atomic tunnel arrays , 1998, Science.

[27]  Herbert G. Winful,et al.  Pulse compression in optical fiber filters , 1985 .

[28]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[29]  F Minardi,et al.  Josephson Junction Arrays with Bose-Einstein Condensates , 2001, Science.

[30]  F Minardi,et al.  Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. , 2001, Physical review letters.

[31]  D Ciampini,et al.  Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. , 2001, Physical review letters.

[32]  Tal Carmon,et al.  Observation of discrete solitons in optically induced real time waveguide arrays. , 2003, Physical review letters.

[33]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[34]  J. Nathan Kutz,et al.  Bose-Einstein Condensates in Standing Waves , 2001 .