Power Spectra for Cold Dark Matter and Its Variants

The bulk of recent cosmological research has focused on the adiabatic cold dark matter model and its simple extensions. Here we present an accurate fitting formula that describes the matter transfer functions of all common variants, including mixed dark matter models. The result is a function of wavenumber, time, and six cosmological parameters: the massive neutrino density, number of neutrino species degenerate in mass, baryon density, Hubble constant, cosmological constant, and spatial curvature. We show how observational constraints—e.g., the shape of the power spectrum, the abundance of clusters and damped Lyα systems, and the properties of the Lyα forest—can be extended to a wide range of cosmologies, which includes variations in the neutrino and baryon fractions in both high-density and low-density universes.

[1]  S. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[2]  Kazuhiro Yamamoto,et al.  Evolution of Small-Scale Cosmological Baryon Perturbations and Matter Transfer Functions , 1997, astro-ph/9709247.

[3]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[4]  R. Croft,et al.  Recovery of the Power Spectrum of Mass Fluctuations from Observations of the Lyα Forest , 1997, astro-ph/9708018.

[5]  D. Eisenstein,et al.  Small-Scale Perturbations in a General Mixed Dark Matter Cosmology , 1997, astro-ph/9710216.

[6]  Xiaohui Fan,et al.  Determining the Amplitude of Mass Fluctuations in the Universe , 1997, astro-ph/9709265.

[7]  N. Gnedin Probing the Universe with the Ly α forest — II. The column density distribution , 1997, astro-ph/9706286.

[8]  M. Norman,et al.  Physical Properties of the Lyα Forest in a Cold Dark Matter Cosmology , 1997, astro-ph/9706087.

[9]  D. Weinberg,et al.  Testing Cosmological Models against the Abundance of Damped Lyman-Alpha Absorbers , 1997, astro-ph/9705118.

[10]  M. Zaldarriaga,et al.  Microwave Background Constraints on Cosmological Parameters , 1997, astro-ph/9702157.

[11]  M. White,et al.  Tensor Anisotropies in an Open Universe , 1997, astro-ph/9701210.

[12]  A. Evrard The Intracluster Gas Fraction in X-ray Clusters : Constraints on the Clustered Mass Density , 1997, astro-ph/9701148.

[13]  D. Weinberg,et al.  A Lower Bound on the Cosmic Baryon Density , 1997, astro-ph/9701012.

[14]  R. Carlberg,et al.  Redshift Evolution of Galaxy Cluster Densities , 1996, astro-ph/9612169.

[15]  U. Pen Normalizing the Temperature Function of Clusters of Galaxies , 1996, astro-ph/9610147.

[16]  D. Weinberg,et al.  The Population of Damped Lyα and Lyman Limit Systems in the Cold Dark Matter Model , 1996, astro-ph/9609072.

[17]  M. Irwin,et al.  Evolution of neutral gas at high redshift: implications for the epoch of galaxy formation , 1996, astro-ph/9608147.

[18]  M. White,et al.  The 4 Year COBE Normalization and Large-Scale Structure , 1996, astro-ph/9607060.

[19]  Chung-Pei Ma Linear Power Spectra in Cold + Hot Dark Matter Models: Analytical Approximations and Applications , 1996, astro-ph/9605198.

[20]  M. White,et al.  Cold dark matter models with high baryon content , 1996, astro-ph/9605057.

[21]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[22]  M. Fukugita,et al.  Constraints on the Cosmic Structure Formation Models from Early Formation of Giant Galaxies , 1996, astro-ph/9604034.

[23]  S. Burles,et al.  Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57 , 1996, Nature.

[24]  Scott Dodelson,et al.  Cold Dark Matter , 1996, Science.

[25]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[26]  J. Bond,et al.  The Peak-Patch Picture of Cosmic Catalogs. III. Application to Clusters , 1996 .

[27]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[28]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[29]  A. Liddle,et al.  Pursuing parameters for critical-density dark matter models , 1995, astro-ph/9511057.

[30]  A. Liddle,et al.  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[31]  N. Sugiyama,et al.  Small-Scale Cosmological Perturbations: An Analytic Approach , 1995, astro-ph/9510117.

[32]  S. Dodelson,et al.  Cold+hot dark matter and the cosmic microwave background , 1995, astro-ph/9509147.

[33]  D. Weinberg,et al.  The Lyman-Alpha Forest in the Cold Dark Matter Model , 1995, astro-ph/9509105.

[34]  R. Cen,et al.  The Lyα Forest from Gravitational Collapse in the Cold Dark Matter + Λ Model , 1995, astro-ph/9511013.

[35]  M. Norman,et al.  A Multispecies Model for Hydrogen and Helium Absorbers in Lyman-Alpha Forest Clouds , 1995, astro-ph/9508133.

[36]  W. Forman,et al.  Cosmological implications of ROSAT observations of groups and clusters of galaxies , 1995 .

[37]  S. Borgani,et al.  Damped Lyman-Alpha Systems versus Cold + Hot Dark Matter , 1994, astro-ph/9405003.

[38]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[39]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[40]  A. Fabian,et al.  Einstein Observatory evidence for the widespread baryon overdensity in clusters of galaxies , 1995, astro-ph/9502092.

[41]  R. Cen,et al.  Gravitational collapse of small scale structure as the origin of the Lyman alpha forest , 1994, astro-ph/9409017.

[42]  E. Bertschinger,et al.  Do Galactic Systems Form Too Late in Cold+Hot Dark Matter Models? , 1994, astro-ph/9407085.

[43]  G. Kauffmann,et al.  Constraints on models of galaxy formation from the evolution of damped Lyman alpha absorption systems , 1994, astro-ph/9402015.

[44]  H. Mo,et al.  Damped Lyman Alpha Systems and Galaxy Formation , 1994, astro-ph/9402014.

[45]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[46]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[47]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[48]  J. Holtzman,et al.  Structure formation with cold plus hot dark matter , 1993, astro-ph/9305011.

[49]  J. Holtzman,et al.  Cluster Correlations for Cold + Hot Dark Matter and Other Models , 1993 .

[50]  Jeremiah P. Ostriker,et al.  ASTRONOMICAL TESTS OF THE COLD DARK MATTER SCENARIO , 1993 .

[51]  R. Cen,et al.  A tilted cold dark matter cosmological scenario , 1992 .

[52]  A. Taylor,et al.  The spectrum of cosmological density fluctuations and nature of dark matter , 1992, Nature.

[53]  D. Schlegel,et al.  Large-scale structure in a universe with mixed hot and cold dark matter , 1992, Nature.

[54]  J. Bond,et al.  COBE Background radiation anisotropies and large scale structure in the universe , 1992 .

[55]  Q. Shafi,et al.  Evidence for some hot dark matter? , 1992, Nature.

[56]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[57]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[58]  K. Olive,et al.  Primordial nucleosynthesis redux , 1991 .

[59]  W. Press The Early Universe. Edward W. Kolb and Michael S. Turner. Addison-Wesley, Redwood City, CA, 1990. xxii, 547 pp., illus. $48.50. Frontiers in Physics, 69. , 1990, Science.

[60]  J. Holtzman Microwave background anisotropies and large-scale structure in universes with cold dark matter, baryons, radiation, and massive and massless neutrinos , 1989 .

[61]  A. Evrard Biased Cold Dark Matter Theory: Trouble from Rich Clusters? , 1989 .

[62]  Alan Dressler,et al.  Large‐Scale Structure in the Universe , 1989 .

[63]  S. White,et al.  Gravitational lensing in a cold dark matter universe , 1988 .

[64]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[65]  R. Scaramella,et al.  Gravitational instability in an Omega(0) = 1, four-component universe , 1985 .

[66]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[67]  J. R. Bond,et al.  The collisionless damping of density fluctuations in an expanding universe , 1983 .

[68]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[69]  J. R. Bond,et al.  Massive neutrinos and the large-scale structure of the Universe , 1980 .

[70]  D. Heath The growth of density perturbations in zero pressure Friedmann–Lemaître universes , 1977 .

[71]  D. Edwards,et al.  The rate of growth of density perturbations in simple big-bang model universes , 1976 .

[72]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .