Phase transition and negative thermal expansion of HfMnMo 3 O 12

[1]  E. Liang,et al.  A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence , 2017 .

[2]  Xiansheng Liu,et al.  Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12 , 2016 .

[3]  Xiansheng Liu,et al.  A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission , 2016 .

[4]  Nana Yuan,et al.  Phase Transition and Negative Thermal Expansion Property of ZrMnMo3O12 , 2016 .

[5]  Xiansheng Liu,et al.  Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12 , 2016, Scientific Reports.

[6]  Wenbo Song,et al.  Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O) , 2014 .

[7]  Wenbo Song,et al.  High Solubility of Hetero-Valence Ion (Cu 2+ ) for Reducing Phase Transition and Thermal Expansion of ZrV 1.6 P 0.4 O 7 , 2014 .

[8]  Wenbo Song,et al.  Phase transition and thermal expansion property of Cr2−xZr0.5xMg0.5xMo3O12 solid solution , 2014 .

[9]  Li Zhi-Yuan,et al.  A Negative Thermal Expansion Material of ZrMgMo3O12 , 2013 .

[10]  J. Deng,et al.  Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi,La)FeO3 over a giant range , 2013, Scientific Reports.

[11]  Qiang Sun,et al.  Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12 , 2013 .

[12]  L. Reznichenko,et al.  Valence state of manganese ions in the La1−α BiLaβMnLa1−δ OLa3±γ ceramics , 2013 .

[13]  Lars Peters,et al.  Giant negative linear compressibility in zinc dicyanoaurate. , 2013, Nature materials.

[14]  Yuping Sun,et al.  Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3 , 2013 .

[15]  Zhongbo Hu,et al.  Thermal expansion properties of Lu2?x FexMo3O12 , 2012 .

[16]  Michel B. Johnson,et al.  Low-temperature investigations of the open-framework material HfMgMo3O12 , 2012 .

[17]  B. Fultz,et al.  Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. , 2011, Physical review letters.

[18]  E. Liang,et al.  Structures, Phase Transition, and Crystal Water of Fe2–xYxMo3O12 , 2011 .

[19]  Y. Zenitani,et al.  High Ion Conductivity in MgHf(WO4)3 Solids with Ordered Structure: 1-D Alignments of Mg2+ and Hf4+ Ions , 2011 .

[20]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[21]  J. Deng,et al.  Coprecipitation synthesis and negative thermal expansion of NbVO5. , 2011, Dalton transactions.

[22]  F. Ferreira,et al.  Low positive thermal expansion in HfMgMo3O12 , 2008 .

[23]  Yu Jia,et al.  Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2 , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  A. Gindhart,et al.  Synthesis of MgHf(WO4)3 and MgZr(WO4)3 using a non-hydrolytic sol–gel method , 2008 .

[25]  Junping Wang,et al.  Effect of Water Species on the Phonon Modes in Orthorhombic Y2(MoO4)3 Revealed by Raman Spectroscopy , 2008 .

[26]  M. Green,et al.  Polymorphism in the negative thermal expansion material magnesium hafnium tungstate , 2008 .

[27]  A. Umarji,et al.  Negative thermal expansion in Er2W3O12 and Yb2W3O12 by high temperature X-ray diffraction , 2005 .

[28]  A. Umarji,et al.  Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln = La, Nd, Dy, Y, Er and Yb) , 2004 .

[29]  A. Omote,et al.  Negative Thermal Expansion in (HfMg)(WO4)3 , 2004 .

[30]  W. Cong A NEW TYPE OF NEGATIVE THERMAL EXPANSION OXIDES , 2001 .

[31]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.