Generation of Cycloheptyne during the Solvolysis of Cyclohexylidenemethyliodonium Salt in the Presence of Base

Solvolysis of 4-methylcyclohexylidenemethyl(phenyl)iodonium tetrafluoroborate (1) and its R isomer (69% ee) was carried out in 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoropropan-2-ol (HFP) in the presence of bases such as acetate, pyridine, triethylamine, and alkoxide. The reaction is much faster in TFE than in HFP. Products in TFE include solely un-rearranged (racemized) enol ether 2 together with iodobenzene, while the main product in HFP is ring-expanded (partially racemized) 1-alkoxycycloheptene 3. Results show that 2 is formed via α-elimination with alkylidenecarbene as an intermediate, while the reaction in HFP to give 3 involves a cycloheptyne intermediate that is mostly derived from an intermediate cyclohept-1-enyl cation via the E1-type pathway.

[1]  G. Lodder,et al.  Nucleophilic Vinylic Substitution and Vinyl Cation Intermediates in the Reactions of Vinyl Iodonium Salts , 2003 .

[2]  Y. Sakanishi,et al.  Cycloheptyne intermediate in the reaction of chiral cyclohexylidenemethyliodonium salt with sulfonates. , 2002, The Journal of organic chemistry.

[3]  H. Yamataka,et al.  Solvolysis of 4-methylcyclohexylidenemethyliodonium salt: chirality probe approach to a primary vinyl cation intermediate. , 2002, The Journal of organic chemistry.

[4]  Y. Sakanishi,et al.  Cyclohexynes. Generation from Iodonium Salts and Regioselective Reaction with Nucleophile. , 2002 .

[5]  Morifumi Fujita,et al.  Chirality probe approach to reactive intermediates , 2002 .

[6]  T. Okuyama Solvolysis of vinyl iodonium salts. New insights into vinyl cation intermediates. , 2002, Accounts of chemical research.

[7]  Y. Sakanishi,et al.  Mechanism of racemization in the reaction of 4-methylcyclohexylidenemethyliodonium salt with sulfonate ions: formation of intermediate cycloheptyne. , 2001, Journal of the American Chemical Society.

[8]  R. Gronheid,et al.  Thermal and photochemical solvolysis of (E)- and (Z)-2-phenyl-1-propenyl(phenyl)iodonium tetrafluoroborate: benzenium and primary vinylic cation intermediates. , 2001, Journal of the American Chemical Society.

[9]  T. Okuyama,et al.  Solvolysis of 1-Decenyl(phenyl)iodonium Tetrafluoroborate: Mechanisms of Nucleophilic Substitution and Elimination , 2001 .

[10]  Y. Sakanishi,et al.  Chirality Transfer from 4-Methylcyclohexylidenemethyl(phenyl)iodonium Tetrafluoroborate to 4-Methylcycloheptanone during Solvolysis: Evidence against a Primary Vinylic Cation as Intermediate , 2000 .

[11]  Chemla,et al.  Fritsch-Buttenberg-Wiechell rearrangement in the aliphatic series , 2000, Organic letters.

[12]  M. Ochiai,et al.  Solvolysis of 2, 2-Dialkylvinyl Iodonium Salt : Alkyl Participation and Possibility of a Primary Vinylic Cation Intermediate , 1999 .

[13]  R. Walsh,et al.  Alkyl migration aptitudes in the vinylidene-acetylene rearrangement and isotope effect in the vinylidene formation process from a deuterium-labeled cyclopropene. , 1999, Angewandte Chemie.

[14]  M. Ochiai,et al.  Solvolysis of Styryliodonium Salt: Products, Rates, and Mechanisms , 1999 .

[15]  M. Ochiai,et al.  Solvolysis of β,β-Dialkylvinyliodonium Salt: Primary Vinyl Cation Intermediate and Alkyl Participation , 1998 .

[16]  M. Braun α-Heteroatom-Substituted 1-Alkenyllithium Reagents: Carbanions and Carbenoids for C-C Bond Formation. , 1998, Angewandte Chemie.

[17]  M. Ochiai,et al.  ACETOLYSIS OF STYRYL AND 1-DECENYL IODONIUM SALTS. OCCURRENCE OF TWO-STEP MECHANISM VIA VINYLENEPHENONIUM ION AND ONE-STEP INVERSION MECHANISM , 1997 .

[18]  M. Ochiai,et al.  Nature of Alkylidenecarbenes Generated from Alkenyl(phenyl)iodium Tetrafluoroborates via Base-Induced α-Elimination. , 1995 .

[19]  M. Ochiai,et al.  Solvolysis of Cyclohexenyliodonium Salt, a New Precursor for the Vinyl Cation: Remarkable Nucleofugality of the Phenyliodonio Group and Evidence for Internal Return from an Intimate Ion-Molecule Pair , 1995 .

[20]  M. Ochiai,et al.  The .alpha.- versus .beta.-elimination reaction of (Z)-(.beta.-halovinyl)iodonium salts: generation of .alpha.-haloalkylidene carbenes and their facile intramolecular 1,2-migration , 1993 .

[21]  M. Ochiai,et al.  GENERATION OF BETA -(PHENYLSULFONYL)ALKYLIDIENECARBENES FROM HYPERVALENT ALKENYL- AND ALKYNYLIODONIUM TETRAFLUOROBORATES AND SYNTHESIS OF 1-(PHENYLSUL FONYL)CYCLOPENTENES , 1991 .

[22]  J. Walton,et al.  Cyclisation of 5-bromomethyl-cycloheptene and -cyclo-octene: a new route to bicyclo[3.2.1]octanes and bicyclo[4.2.1]nonanes , 1989 .

[23]  M. Ochiai,et al.  Hypervalent alkenyliodonium tetrafluoroborates. Evidence for generation of alkylidenecarbenes via base-induced .alpha.-elimination , 1988 .

[24]  M. Ochiai,et al.  Synthesis and structural analysis of a vinyliodonium salt with an α-silyl substituent, and generation of an iodonium ylide from it , 1988 .

[25]  P. Stang,et al.  Crystal structure of a novel tricoordinate vinyliodinane species and evidence for an alkylidenecarbene−iodonium ylide , 1987 .

[26]  P. Shevlin,et al.  An experimental and theoretical evaluation of the intramolecular reactions of cyclohexyne , 1987 .

[27]  A. Krebs,et al.  Angle strained cycloalkynes , 1983 .

[28]  A. Krebs,et al.  Untersuchungen über gespannte cyclische Acetylene, VIII. Hydrierung winkelgespannter Siebenring‐Acetylene mit Alkoholen , 1980 .

[29]  K. Erickson,et al.  Rearrangement of Bromomethylenecycloalkanes with Potassium t-Butoxide , 1965 .