Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis

[1]  C. Gong,et al.  Deregulation of sphingolipid metabolism in Alzheimer's disease , 2010, Neurobiology of Aging.

[2]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[3]  B. Davletov,et al.  Real-time assay for monitoring membrane association of lipid-binding domains , 2008, Analytical biochemistry.

[4]  Yusuf A. Hannun,et al.  Principles of bioactive lipid signalling: lessons from sphingolipids , 2008, Nature Reviews Molecular Cell Biology.

[5]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[6]  J. Matsuda,et al.  The function of sphingolipids in the nervous system: lessons learnt from mouse models of specific sphingolipid activator protein deficiencies , 2007, Journal of neurochemistry.

[7]  T. Söllner Lipid droplets highjack SNAREs , 2007, Nature Cell Biology.

[8]  R. Jahn,et al.  Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids , 2007, Nature Structural &Molecular Biology.

[9]  J. Adams,et al.  Maternal Alcohol Consumption Increases Sphingosine Levels in the Brains of Progeny Mice , 2007, Neurochemical Research.

[10]  A. Futerman,et al.  The metabolism and function of sphingolipids and glycosphingolipids , 2007, Cellular and Molecular Life Sciences.

[11]  R. Heintzmann,et al.  Determinants of synaptobrevin regulation in membranes. , 2007, Molecular biology of the cell.

[12]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[13]  B. Davletov,et al.  Mechanism of arachidonic acid action on syntaxin–Munc18 , 2007, EMBO reports.

[14]  Huan Yu,et al.  Involvement of Sphingosine-1-Phosphate in Glutamate Secretion in Hippocampal Neurons , 2007, Molecular and Cellular Biology.

[15]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[16]  Ludwig Kappos,et al.  Oral fingolimod (FTY720) for relapsing multiple sclerosis. , 2006, The New England journal of medicine.

[17]  B. Davletov,et al.  SNAP25 is a pre‐synaptic target for the depressant action of reactive oxygen species on transmitter release , 2006, Journal of neurochemistry.

[18]  T. Blom,et al.  Sphingosine kinase regulates voltage operated calcium channels in GH4C1 rat pituitary cells. , 2006, Cellular signalling.

[19]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[20]  E. Posse de Chaves Sphingolipids in apoptosis, survival and regeneration in the nervous system. , 2006, Biochimica et biophysica acta.

[21]  S. Jung,et al.  Dopamine release in PC12 cells is mediated by Ca2+‐dependent production of ceramide via sphingomyelin pathway , 2005, Journal of neurochemistry.

[22]  S. Yelamanchili,et al.  The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles. , 2005, European journal of cell biology.

[23]  K. Broadie,et al.  Lipid regulation of the synaptic vesicle cycle , 2005, Nature Reviews Neuroscience.

[24]  F. Goñi,et al.  Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. , 2005, Biophysical journal.

[25]  L. Colombaioni,et al.  Sphingolipid metabolites in neural signalling and function , 2004, Brain Research Reviews.

[26]  T. Südhof,et al.  Synaptobrevin is essential for fast synaptic-vesicle endocytosis , 2004, Nature Cell Biology.

[27]  Usha Acharya,et al.  Ceramidase Regulates Synaptic Vesicle Exocytosis and Trafficking , 2004, The Journal of Neuroscience.

[28]  P. De Camilli,et al.  Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[30]  C. Lévêque,et al.  Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Vanier,et al.  Sphingosylphosphorylcholine in Niemann-Pick Disease Brain: Accumulation in Type A But Not in Type B , 1999, Neurochemical Research.

[32]  A. Ogura,et al.  Nerve Growth Factor-induced Glutamate Release Is via p75 Receptor, Ceramide, and Ca2+ from Ryanodine Receptor in Developing Cerebellar Neurons* , 2003, Journal of Biological Chemistry.

[33]  T. Meyer,et al.  Specific Localization and Timing in Neuronal Signal Transduction Mediated by Protein-Lipid Interactions , 2003, Neuron.

[34]  A. Morris,et al.  Lipids and the exocytotic machinery of eukaryotic cells. , 2003, Current opinion in cell biology.

[35]  Dae-Hyuk Kweon,et al.  Regulation of neuronal SNARE assembly by the membrane , 2003, Nature Structural Biology.

[36]  G. Schiavo,et al.  VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes , 2003, FEBS letters.

[37]  T. Söllner,et al.  Regulated exocytosis and SNARE function (Review) , 2003, Molecular membrane biology.

[38]  R. Cooper,et al.  Sphingosine 1‐phosphate enhances spontaneous transmitter release at the frog neuromuscular junction , 2002, British journal of pharmacology.

[39]  Jodi Gureasko,et al.  Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I , 2002, The Journal of cell biology.

[40]  B. Davletov,et al.  Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion , 2002, Nature.

[41]  Y. Humeau,et al.  A role for phospholipase D1 in neurotransmitter release , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[43]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[44]  T. Linke,et al.  Overexpression of Acid Ceramidase Protects from Tumor Necrosis Factor–Induced Cell Death , 2000, The Journal of experimental medicine.

[45]  J. Gamble,et al.  Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes. , 2000, The Biochemical journal.

[46]  C. Lévêque,et al.  Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. Wilkin,et al.  Vesicle exocytosis stimulated by α‐latrotoxin is mediated by latrophilin and requires both external and stored Ca2+ , 1998, The EMBO journal.

[48]  T. Meyer,et al.  Green Fluorescent Protein (GFP)-tagged Cysteine-rich Domains from Protein Kinase C as Fluorescent Indicators for Diacylglycerol Signaling in Living Cells , 1998, The Journal of cell biology.

[49]  B. Meister,et al.  Molecular components of the exocytotic machinery in the rat pituitary gland. , 1996, Endocrinology.

[50]  C. Sirrenberg,et al.  Neurotrophins Stimulate the Release of Dopamine from Rat Mesencephalic Neurons via Trk and p75Lntr Receptors* , 1996, The Journal of Biological Chemistry.

[51]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[52]  P. Hanson,et al.  Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. , 1995, The EMBO journal.

[53]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[54]  Richard J. Bookman,et al.  Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells , 1994, Neuron.

[55]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[56]  M. Verhage,et al.  Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. , 1992, The Journal of biological chemistry.

[57]  R. Zorec,et al.  Cytosolic chloride ions stimulate Ca2+‐induced exocytosis in melanotrophs , 1992, FEBS letters.

[58]  R. Epand,et al.  Inhibition of protein kinase C by sphingosine correlates with the presence of positive charge. , 1989, Biochemical and biophysical research communications.

[59]  E Neher,et al.  Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.